Few-Shot Graph Learning for Molecular Property Prediction

Overview

Few-shot Graph Learning for Molecular Property Prediction

Introduction

This is the source code and dataset for the following paper:

Few-shot Graph Learning for Molecular Property Prediction. In WWW 2021.

Contact Zhichun Guo ([email protected]), if you have any questions.

Datasets

The datasets uploaded can be downloaded to train our model directly.

The original datasets are downloaded from Data. We utilize Original_datasets/splitdata.py to split the datasets according to the molecular properties and save them in different files in the Original_datasets/[DatasetName]/new. Then run main.py, the datasets will be automatically preprocessed by loader.py and the preprocessed results will be saved in the Original_datasets/[DatasetName]/new/[PropertyNumber]/propcessed.

Usage

Installation

We used the following Python packages for the development by python 3.6.

- torch = 1.4.0
- torch-geometric = 1.6.1
- torch-scatter = 2.0.4
- torch-sparse = 0.6.1
- scikit-learn = 0.23.2
- tqdm = 4.50.0
- rdkit

Run code

Datasets and k (for k-shot) can be changed in the last line of main.py.

python main.py

Performance

The performance of meta-learning is not stable for some properties. We report two times results and the number of the iteration where we obtain the best results here for your reference.

Dataset k Iteration Property Results k Iteration Property Results
Sider 1 307/599 Si-T1 75.08/75.74 5 561/585 Si-T1 76.16/76.47
Si-T2 69.44/69.34 Si-T2 68.90/69.77
Si-T3 69.90/71.39 Si-T3 72.23/72.35
Si-T4 71.78/73.60 Si-T4 74.40/74.51
Si-T5 79.40/80.50 Si-T5 81.71/81.87
Si-T6 71.59/72.35 Si-T6 74.90/73.34
Ave. 72.87/73.82 Ave. 74.74/74.70
Tox21 1 1271/1415 SR-HS 73.72/73.90 5 1061/882 SR-HS 74.85/74.74
SR-MMP 78.56/79.62 SR-MMP 80.25/80.27
SR-p53 77.50/77.91 SR-p53 78.86/79.14
Ave. 76.59/77.14 Ave. 77.99/78.05

Acknowledgements

The code is implemented based on Strategies for Pre-training Graph Neural Networks.

Reference

@article{guo2021few,
  title={Few-Shot Graph Learning for Molecular Property Prediction},
  author={Guo, Zhichun and Zhang, Chuxu and Yu, Wenhao and Herr, John and Wiest, Olaf and Jiang, Meng and Chawla, Nitesh V},
  journal={arXiv preprint arXiv:2102.07916},
  year={2021}
}
Owner
Zhichun Guo
Zhichun Guo is a Ph.D. student at University of Notre Dame.
Zhichun Guo
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023