Styled Augmented Translation

Related tags

Deep LearningSAT
Overview

SAT

Style Augmented Translation

PWC

Introduction

By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 different domains of English-Vietnamese Translation.

English to Vietnamese Translation (BLEU score)

drawing

Vietnamese to English Translation (BLEU score)

drawing

Get data and model at Google Cloud Storage

Check out our demo web app

Visit our blog post for more details.


Using the code

This code is build on top of vietai/dab:

To prepare for training, generate tfrecords from raw text files:

python t2t_datagen.py \
--data_dir=$path_to_folder_contains_vocab_file \
--tmp_dir=$path_to_folder_that_contains_training_data \
--problem=$problem

To train a Transformer model on the generated tfrecords

python t2t_trainer.py \
--data_dir=$path_to_folder_contains_vocab_file_and_tf_records \
--problem=$problem \
--hparams_set=$hparams_set \
--model=transformer \
--output_dir=$path_to_folder_to_save_checkpoints

To run inference on the trained model:

python t2t_decoder.py \
--data_dir=$path_to_folde_contains_vocab_file_and_tf_records \
--problem=$problem \
--hparams_set=$hparams_set \
--model=transformer \
--output_dir=$path_to_folder_contains_checkpoints

In this colab, we demonstrated how to run these three phases in the context of hosting data/model on Google Cloud Storage.


Dataset

Our data contains roughly 3.3 million pairs of texts. After augmentation, the data is of size 26.7 million pairs of texts. A more detail breakdown of our data is shown in the table below.

Pure Augmented
Fictional Books 333,189 2,516,787
Legal Document 1,150,266 3,450,801
Medical Publication 5,861 27,588
Movies Subtitles 250,000 3,698,046
Software 79,912 239,745
TED Talk 352,652 4,983,294
Wikipedia 645,326 1,935,981
News 18,449 139,341
Religious texts 124,389 1,182,726
Educational content 397,008 8,475,342
No tag 5,517 66,299
Total 3,362,569 26,715,950

Data sources is described in more details here.

Comments
  • Data leakage issue in evaluation?

    Data leakage issue in evaluation?

    Hi team @lmthang @thtrieu @heraclex12 @hqphat @KienHuynh

    The obtained results of a Transformer-based model on the PhoMT test set surprised me. My first thought was that as VietAI and PhoMT datasets have several overlapping domains (e.g. Wikihow, TED talks, Opensubtitles, news..): whether there might be a potential data leakage issue in your evaluation (e.g. PhoMT English-Vietnamese test pairs appear in the VietAI training set)?

    In particular, we find that 6294/19151 PhoMT English-Vietnamese test pairs appear in the VietAI training set (v2). When evaluating your model on the PhoMT test set, did you guys retrain the model on a VietAI training set variant that does not contain PhoMT English-Vietnamese test pairs?

    Cheers, Dat.

    opened by datquocnguyen 3
  • Demo website is not working

    Demo website is not working

    Hi, seems like the easiest to reach out here but https://demo.vietai.org/ is down, looks like the page tried to serve a 404 error page.

    Connection failed with status 404, and response "<!DOCTYPE html> <html lang=en> <meta charset=utf-8> <meta name=viewport content="initial-scale=1, minimum-scale=1, width=device-width"> <title>Error 404 (Not Found)!!1</title> <style> *{margin:0;padding:0}html,code{font:15px/22px arial,sans-serif}html{background:#fff;color:#222;padding:15px}body{margin:7% auto 0;max-width:390px;min-height:180px;padding:30px 0 15px}* > body{background:url(//www.google.com/images/errors/robot.png) 100% 5px no-repeat;padding-right:205px}p{margin:11px 0 22px;overflow:hidden}ins{color:#777;text-decoration:none}a img{border:0}@media screen and (max-width:772px){body{background:none;margin-top:0;max-width:none;padding-right:0}}#logo{background:url(//www.google.com/images/branding/googlelogo/1x/googlelogo_color_150x54dp.png) no-repeat;margin-left:-5px}@media only screen and (min-resolution:192dpi){#logo{background:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) no-repeat 0% 0%/100% 100%;-moz-border-image:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) 0}}@media only screen and (-webkit-min-device-pixel-ratio:2){#logo{background:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) no-repeat;-webkit-background-size:100% 100%}}#logo{display:inline-block;height:54px;width:150px} </style> <a href=//www.google.com/><span id=logo aria-label=Google></span></a> <p><b>404.</b> <ins>That’s an error.</ins> <p>The requested URL <code>/healthz</code> was not found on this server. <ins>That’s all we know.</ins> ".
    
    opened by VietThan 1
  • Got RuntimeError when run on Google Colab

    Got RuntimeError when run on Google Colab

    I ran the Readme.md samples on Google Colab with GPU and got this Error "RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0! (when checking argument for argument index in method wrapper__index_select)".

    Error code: outputs = model.generate(tokenizer(inputs, return_tensors="pt", padding=True).input_ids.to('cuda'), max_length=512)

    opened by kietbg0079 0
  • Got error 'AssertionError: Torch not compiled with CUDA enabled' on Macbook M1 pro

    Got error 'AssertionError: Torch not compiled with CUDA enabled' on Macbook M1 pro

    I have tried the example on my Macbook M1 pro but got this error: =>outputs = model.generate(tokenizer(inputs, return_tensors="pt", padding=True).input_ids.to('cuda'), max_length=512) raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled

    Please help!

    opened by htnha 4
  • Question about loading model

    Question about loading model

    I have a question about loading model. I have trained a Russian-to-Vietnamese model base on your code and tensor2tensor. Every time I want to predict a new sentence, it always load the model again, even before that I have already predicted another sentence. I want to ask that if there is a way not to have reload the model when predict a new sentence. Thank you very much

    opened by hieunguyenquoc 1
  • I have a issue about running decoder

    I have a issue about running decoder

    Data loss: Unable to open table file /content/drive/MyDrive/SAT/checkpoint: Failed precondition: /content/drive/MyDrive/SAT/checkpoint; Is a directory: perhaps your file is in a different file format and you need to use a different restore operator?

    I used a pretrain model : model.augmented.envi.ckpt-1415000.data-00000-of-00001, model.augmented.envi.ckpt-1415000.index, model.augmented.envi.ckpt-1415000.meta. All 3 file are put in checkpoint

    Could somebody help me with this issue ?

    opened by hieunguyenquoc 6
Releases(v1.0)
  • v1.0(Oct 2, 2021)

    First version.

    Trained on 3.3M training data points. Transformer with 9-layer encoder and 9-layer decoder. Tested on a multi-domain dataset, outperforming Google Translate. Experiments with style-tagging and data appending.

    Source code(tar.gz)
    Source code(zip)
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022