Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

Overview

ResMLP - Pytorch

Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch

Install

$ pip install res-mlp-pytorch

Usage

import torch
from res_mlp_pytorch import ResMLP

model = ResMLP(
    image_size = 256,
    patch_size = 16,
    dim = 512,
    depth = 12,
    num_classes = 1000
)

img = torch.randn(1, 3, 256, 256)
pred = model(img) # (1, 1000)

Citations

@misc{touvron2021resmlp,
    title   = {ResMLP: Feedforward networks for image classification with data-efficient training}, 
    author  = {Hugo Touvron and Piotr Bojanowski and Mathilde Caron and Matthieu Cord and Alaaeldin El-Nouby and Edouard Grave and Armand Joulin and Gabriel Synnaeve and Jakob Verbeek and Hervé Jégou},
    year    = {2021},
    eprint  = {2105.03404},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

MLP-Like Vision Permutator for Visual Recognition (PyTorch)
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Xview3 solution - XView3 challenge, 2nd place solution
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Unofficial Implementation of MLP-Mixer in TensorFlow
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Implementation of
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Comments
  • torch dataset example

    torch dataset example

    I wrote this examples with a data loader:

    import os
    import natsort
    from PIL import Image
    import torch
    import torchvision.transforms as T
    from res_mlp_pytorch.res_mlp_pytorch import ResMLP
    
    class LPCustomDataSet(torch.utils.data.Dataset):
        '''
            Naive Torch Image Dataset Loader
            with support for Image loading errors
            and Image resizing
        '''
        def __init__(self, main_dir, transform):
            self.main_dir = main_dir
            self.transform = transform
            all_imgs = os.listdir(main_dir)
            self.total_imgs = natsort.natsorted(all_imgs)
    
        def __len__(self):
            return len(self.total_imgs)
    
        def __getitem__(self, idx):
            img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
            try:
                image = Image.open(img_loc).convert("RGB")
                tensor_image = self.transform(image)
                return tensor_image
            except:
                pass
                return None
    
        @classmethod
        def collate_fn(self, batch):
            '''
                Collate filtering not None images
            '''
            batch = list(filter(lambda x: x is not None, batch))
            return torch.utils.data.dataloader.default_collate(batch)
    
        @classmethod
        def transform(self,img):
            '''
                Naive image resizer
            '''
            transform = T.Compose([
                T.Resize(256),
                T.CenterCrop(224),
                T.ToTensor(),
                T.Normalize(
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]
                )
            ])
            return transform(img)
    

    to feed ResMLP:

    model = ResMLP(
        image_size = 256,
        patch_size = 16,
        dim = 512,
        depth = 12,
        num_classes = 1000
    )
    batch_size = 2
    my_dataset = LPCustomDataSet(os.path.join(os.path.dirname(
        os.path.abspath(__file__)), 'data'), transform=LPCustomDataSet.transform)
    train_loader = torch.utils.data.DataLoader(my_dataset , batch_size=batch_size, shuffle=False, 
                                   num_workers=4, drop_last=True, collate_fn=LPCustomDataSet.collate_fn)
    for idx, img in enumerate(train_loader):
        pred = model(img) # (1, 1000)
        print(idx, img.shape, pred.shape
    

    But I get this error

    RuntimeError: Given groups=1, weight of size [256, 256, 1], expected input[1, 196, 512] to have 256 channels, but got 196 channels instead
    

    not sure if LPCustomDataSet.transform has the correct for the input image

    opened by loretoparisi 3
  • add dropout and CIFAR100 example notebook

    add dropout and CIFAR100 example notebook

    • According to ResMLP paper, it appears that dropout layer has been implemented in Machine translation when using ResMLP.
    We use Adagrad with learning rate 0.2, 32k steps of linear warmup, label smoothing 0.1, dropout rate 0.15 for En-De and 0.1 for En-Fr.
    
    • Since MLP literatures often mention that MLP is susceptible to overfitting, which is one of the reason why weight decay is so high, implementing dropout will be reasonable choice of regularization.

    Open in Colab | 🔗 Wandb Log

    • Above is my simple experimentation on CIFAR100 dataset, with three different dropout rates: [0.0, 0.25, 0.5].
    • Higher dropout yielded better test metrics(loss, acc1 and acc5).
    opened by snoop2head 0
  • What learning rate/scheduler/optimizer are suitable for training mlp-mixer?

    What learning rate/scheduler/optimizer are suitable for training mlp-mixer?

    Thanks for your codes!

    I find it is very important to set suitable lr/scheduler/optimizer for training res-mlp models. In my experiments with a small dataset, the classification performance is very poor when I train models with lr=1e-3 or 1e-4, weight-decay=05e-4, scheduler=WarmupCosineLrScheduler, optim='sgd'. The results increase remarkably when lr=5e-3, weight-decay=0.2, scheduler=WarmupCosineLrScheduler, optim='lamb'.

    While the results are still much lower than CNN models with comparable params. trained from scratch. Could you provide any suggestions for training res-mlp?

    opened by QiushiYang 0
Releases(0.0.6)
Owner
Phil Wang
Working with Attention.
Phil Wang
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022