[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

Overview

EPCDepth

EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details are described in our paper:

Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

Rui Peng, Ronggang Wang, Yawen Lai, Luyang Tang, Yangang Cai

ICCV 2021 (arxiv)

EPCDepth can produce the most accurate and sharpest result. In the last example, the depth of the person in the second red box should be greater than that of the road sign because the road sign obscures the person. Only our model accurately captures the cue of occlusion.

โš™ Setup

1. Recommended environment

  • PyTorch 1.1
  • Python 3.6

2. KITTI data

You can download the raw KITTI dataset (about 175GB) by running:

wget -i dataset/kitti_archives_to_download.txt -P <your kitti path>/
cd <your kitti path>
unzip "*.zip"

Then, we recommend that you converted the png images to jpeg with this command:

find <your kitti path>/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'

or you can skip this conversion step and by manually adjusting the suffix of the image from .jpg to .png in dataset/kitti_dataset.py. Our pre-trained model is trained in jpg, and the test performance on png will slightly decrease.

3. Prepare depth hint

Once you have downloaded the KITTI dataset as in the previous step, you need to prepare the depth hint by running:

python precompute_depth_hints.py --data_path <your kitti path>

the generated depth hint will be saved to <your kitti path>/depth_hints. You should also pay attention to the suffix of the image.

๐Ÿ“Š Evaluation

1. Download models

Download our pretrained model and put it to <your model path>.

Pre-trained PP HxW Backbone Output Scale Abs Rel Sq Rel RMSE ฮด < 1.25
model18_lr โˆš 192x640 resnet18 (pt) d0 0.0998 0.722 4.475 0.888
d2 0.1 0.712 4.462 0.886
model18 โˆš 320x1024 resnet18 (pt) d0 0.0925 0.671 4.297 0.899
d2 0.0920 0.655 4.268 0.898
model50 โˆš 320x1024 resnet50 (pt) d0 0.0905 0.646 4.207 0.901
d2 0.0905 0.629 4.187 0.900

Note: pt refers to pre-trained on ImageNet, and the results of low resolution are a bit different from the paper.

2. KITTI evaluation

This operation will save the estimated disparity map to <your disparity save path>. To recreate the results from our paper, run:

python main.py 
    --val --data_path <your kitti path> --resume <your model path>/model18.pth.tar 
    --use_full_scale --post_process --output_scale 0 --disps_path <your disparity save path>

The shape of saved disparities in numpy data format is (N, H, W).

3. NYUv2 evaluation

We validate the generalization ability on the NYU-Depth-V2 dataset using the mode trained on the KITTI dataset. Download the testing data nyu_test.tar.gz, and unzip it to <your nyuv2 testing date path>. All evaluation codes are in the nyuv2Testing folder. Run:

python nyuv2_testing.py 
    --data_path <your nyuv2 testing date path>
    --resume <your mode path>/model50.pth.tar --post_process
    --save_dir <your nyuv2 disparity save path>

By default, only the visualization results (png format) of the predicted disparity and ground-truth will be saved to <your nyuv2 disparity save path> on NYUv2 dataset.

๐Ÿ“ฆ KITTI Results

You can download our precomputed disparity predictions from the following links:

Disparity PP HxW Backbone Output Scale Abs Rel Sq Rel RMSE ฮด < 1.25
disps18_lr โˆš 192x640 resnet18 (pt) d0 0.0998 0.722 4.475 0.888
disps18 โˆš 320x1024 resnet18 (pt) d0 0.0925 0.671 4.297 0.899
disps50 โˆš 320x1024 resnet50 (pt) d0 0.0905 0.646 4.207 0.901

๐Ÿ–ผ Visualization

To visualize the disparity map saved in the KITTI evaluation (or other disparities in numpy data format), run:

python main.py --vis --disps_path <your disparity save path>/disps50.npy

The visualized depth map will be saved to <your disparity save path>/disps_vis in png format.

โณ Training

To train the model from scratch, run:

python main.py 
    --data_path <your kitti path> --model_dir <checkpoint save dir> 
    --logs_dir <tensorboard save dir> --pretrained --post_process 
    --use_depth_hint --use_spp_distillation --use_data_graft 
    --use_full_scale --gpu_ids 0

๐Ÿ”ง Suggestion

  1. The magnitude of performance improvement: Data Grafting > Full-Scale > Self-Distillation. We noticed that the performance improvement of self-distillation becomes insignificant when the model capacity is large. Therefore, it is potential to explore more accurate self-distillation label extraction methods and better self-distillation strategies in the future.
  2. According to our experimental experience, the convergence of the self-supervised monocular depth estimation model using a larger backbone network is relatively unstable. You can verify your innovations on the small backbone first, and then adjust the learning rate appropriately to train on the big backbone.
  3. We found that using a pure RSU encoder has better performance than the traditional Resnet encoder, but unfortunately there is no RSU encoder pre-trained on Imagenet. Therefore, we firmly believe that someone can pre-train the RSU encoder on Imagenet and replace the resnet encoder of this model to get huge performance improvement.

โš– Citation

If you find our work useful in your research please consider citing our paper:

@inproceedings{epcdepth,
    title = {Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation},
    author = {Peng, Rui and Wang, Ronggang and Lai, Yawen and Tang, Luyang and Cai, Yangang},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
    year = {2021}
}

๐Ÿ‘ฉโ€ Acknowledgements

Our depth hint module refers to DepthHints, the NYUv2 pre-processing refers to P2Net, and the RSU block refers to U2Net.

Owner
Rui Peng
Rui Peng
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollarsโ€™ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo รจ abilitare l'account istituziona

20 Dec 16, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch ์„œ๊ฐ•๋Œ€ํ•™๊ต ํ˜„๋Œ€๋ชจ๋น„์Šค SW ํ”„๋กœ๊ทธ๋žจ์—์„œ ์ง„ํ–‰ํ•œ ์ธ๊ณต์ง€๋Šฅ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค. Jetson nano๋ฅผ ์ด์šฉํ•ด pre-trained network๋ฅผ fine tuning์‹œ์ผœ ์ฐจ๋Ÿ‰ ๋ฐ ์‹ ํ˜ธ๋“ฑ ์ธ์‹์„ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค

Haneul Kim 1 Nov 16, 2021
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
๐Ÿ“š A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

๐Ÿ“š A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon ๐Ÿ’ฏ JAX exercises Mission ๐Ÿš€ To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Rรถpke 0 Dec 17, 2021
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022