This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Related tags

Deep LearningVDA
Overview

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models

This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Quick Links

Overview

We propose a general framework Virtual Data Augmentation (VDA) for robustly fine-tuning Pre-trained Language Models for downstream tasks. Our VDA utilizes a masked language model with Gaussian noise to augment virtual examples for improving the robustness, and also adopts regularized training to further guarantee the semantic relevance and diversity.

Train VDA

In the following section, we describe how to train a model with VDA by using our code.

Training

Data

For evaluation of our VDA, we use 6 text classification datasets, i.e. Yelp, IMDB, AGNews, MR, QNLI and MRPC datasets. These datasets can be downloaded from the GoogleDisk

After download the two ziped files, users should unzip the data fold that contains the training, validation and test data of the 6 datasets. While the Robust fold contains the examples for test the robustness.

Training scripts We public our VDA with 4 base models. For single sentence classification tasks, we use text_classifier_xxx.py files. While for sentence pair classification tasks, we use text_pair_classifier_xxx.py:

  • text_classifier.py and text_pair_classifier.py: BERT-base+VDA

  • text_classifier_freelb.py and text_pair_classifier_freelb.py: FreeLB+VDA on BERT-base

  • text_classifier_smart.py and text_pair_classifier_smart.py: SMART+VDA on BERT-base, where we only use the smooth-inducing adversarial regularization.

  • text_classifier_smix.py and text_pair_classifier_smix.py: Smix+VDA on BERT-base, where we remove the adversarial data augmentation for fair comparison

We provide example scripts for both training and test of our VDA on the 6 datasets. In run_train.sh, we provide 6 example for training on the yelp and qnli datasets. This script calls text_classifier_xxx.py for training (xxx refers to the base model). We explain the arguments in following:

  • --dataset: Training file path.
  • --mlm_path: Pre-trained checkpoints to start with. For now we support BERT-based models (bert-base-uncased, bert-large-uncased, etc.)
  • --save_path: Saved fine-tuned checkpoints file.
  • --max_length: Max sequence length. (For Yelp/IMDB/AG, we use 512. While for MR/QNLI/MRPC, we use 256.)
  • --max_epoch: The maximum training epoch number. (In most of datasets and models, we use 10.)
  • --batch_size: The batch size. (We adapt the batch size to the maximum number w.r.t the GPU memory size. Note that too small number may cause model collapse.)
  • --num_label: The number of labels. (For AG, we use 4. While for other, we use 2.)
  • --lr: Learning rate.
  • --num_warmup: The rate of warm-up steps.
  • --variance: The variance of the Gaussian noise.

For results in the paper, we use Nvidia Tesla V100 32G and Nvidia 3090 24G GPUs to train our models. Using different types of devices or different versions of CUDA/other softwares may lead to slightly different performance.

Evaluation

During training, our model file will show the original accuracy on the test set of the 6 datasets, which evaluates the accuracy performance of our model. Our evaluation code for robustness is based on a modified version of BERT-Attack. It outputs Attack Accuracy, Query Numbers and Perturbation Ratio metrics.

Before evaluation, please download the evaluation datasets for Robustness from the GoogleDisk. Then, following the commonly-used settings, users need to download and process consine similarity matrix following TextFooler.

Based on the checkpoint of the fine-tuned models, we use therun_test.sh script for test the robustness on yelp and qnli datasets. It is based on bert_robust.py file. We explain the arguments in following:

  • --data_path: Training file path.
  • --mlm_path: Pre-trained checkpoints to start with. For now we support BERT-based models (bert-base-uncased, bert-large-uncased, etc.)
  • --tgt_path: The fine-tuned checkpoints file.
  • --num_label: The number of labels. (For AG, we use 4. While for other, we use 2.)

which is expected to output the results as:

original accuracy is 0.960000, attack accuracy is 0.533333, query num is 687.680556, perturb rate is 0.177204

Citation

Please cite our paper if you use VDA in your work:

@inproceedings{zhou2021vda,
  author    = {Kun Zhou, Wayne Xin Zhao, Sirui Wang, Fuzheng Zhang, Wei Wu and Ji-Rong Wen},
  title     = {Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models},
  booktitle = {{EMNLP} 2021},
  publisher = {The Association for Computational Linguistics},
}
Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022