HIVE: Evaluating the Human Interpretability of Visual Explanations

Related tags

Deep LearningHIVE
Overview

HIVE: Evaluating the Human Interpretability of Visual Explanations

Project Page | Paper

This repo provides the code for HIVE, a human evaluation framework for interpretability methods in computer vision.

@article{kim2021hive,
  author = {Sunnie S. Y. Kim and Nicole Meister and Vikram V. Ramaswamy and Ruth Fong and Olga Russakovsky},
  title = {{HIVE}: Evaluating the Human Interpretability of Visual Explanations},
  journal = {CoRR},
  volume = {abs/2112.03184},
  year = {2021}
}

Our study UIs

Distinction task

  • combined_gradcam_nolabels.html
  • combined_bagnet_nolabels.html
  • combined_protopnet_distinction.html
  • combined_prototree_distinction.html

Agreement task

  • combined_protopnet_agreement.html
  • combined_prototree_agreement.html

Additional studies

  • combined_gradcam_labels.html
  • combined_bagnet_labels.html
  • combined_prototree_agreement_tree.html

Running human studies

We ran our studies through Human Intelligence Tasks (HITs) deployed on Amazon Mechanical Turk (AMT). We use simple-amt, a microframework for working with AMT. Here we describe which files correspond to which study UIs and provide brief instructions for running studies.

Brief instructions on how to run user studies on AMT

Please check out the original simple-amt repository for more information on how to run a HIT on AMT.

Launch HITs on AMT

python launch_hits.py \
--html_template=hit_templates/combined_prototree_distinction.html \
--hit_properties_file=hit_properties/properties.json \
--input_json_file=examples/input_prototree_distinction.txt \
--hit_ids_file=examples/hit_ids_prototree_distinction.txt --prod

Check HIT progress

python show_hit_progress.py \
--hit_ids_file=examples/hit_ids_prototree_distinction.txt --prod

Get results

python get_results.py \
  --hit_ids_file=examples/hit_ids_prototree_distinction.txt \
  --output_file=examples/results_prototree_distinction.txt \
  > examples/results_prototree_distinction.txt --prod

Approve work

python approve_hits.py \
--hit_ids_file=examples/hit_ids_prototree_distinction.txt --prod
Owner
Princeton Visual AI Lab
Princeton Visual AI Lab
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022