PyTorch implementations of neural network models for keyword spotting

Related tags

Deep Learninghonk
Overview

Honk: CNNs for Keyword Spotting

Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which accompanies the recent release of their Speech Commands Dataset. For more details, please consult our writeup:

Honk is useful for building on-device speech recognition capabilities for interactive intelligent agents. Our code can be used to identify simple commands (e.g., "stop" and "go") and be adapted to detect custom "command triggers" (e.g., "Hey Siri!").

Check out this video for a demo of Honk in action!

Demo Application

Use the instructions below to run the demo application (shown in the above video) yourself!

Currently, PyTorch has official support for only Linux and OS X. Thus, Windows users will not be able to run this demo easily.

To deploy the demo, run the following commands:

  • If you do not have PyTorch, please see the website.
  • Install Python dependencies: pip install -r requirements.txt
  • Install GLUT (OpenGL Utility Toolkit) through your package manager (e.g. apt-get install freeglut3-dev)
  • Fetch the data and models: ./fetch_data.sh
  • Start the PyTorch server: python .
  • Run the demo: python utils/speech_demo.py

If you need to adjust options, like turning off CUDA, please edit config.json.

Additional notes for Mac OS X:

  • GLUT is already installed on Mac OS X, so that step isn't needed.
  • If you have issues installing pyaudio, this may be the issue.

Server

Setup and deployment

python . deploys the web service for identifying if audio contain the command word. By default, config.json is used for configuration, but that can be changed with --config=<file_name>. If the server is behind a firewall, one workflow is to create an SSH tunnel and use port forwarding with the port specified in config (default 16888).

In our honk-models repository, there are several pre-trained models for Caffe2 (ONNX) and PyTorch. The fetch_data.sh script fetches these models and extracts them to the model directory. You may specify which model and backend to use in the config file's model_path and backend, respectively. Specifically, backend can be either caffe2 or pytorch, depending on what format model_path is in. Note that, in order to run our ONNX models, the packages onnx and onnx_caffe2 must be present on your system; these are absent in requirements.txt.

Raspberry Pi (RPi) Infrastructure Setup

Unfortunately, getting the libraries to work on the RPi, especially librosa, isn't as straightforward as running a few commands. We outline our process, which may or may not work for you.

  1. Obtain an RPi, preferably an RPi 3 Model B running Raspbian. Specifically, we used this version of Raspbian Stretch.
  2. Install dependencies: sudo apt-get install -y protobuf-compiler libprotoc-dev python-numpy python-pyaudio python-scipy python-sklearn
  3. Install Protobuf: pip install protobuf
  4. Install ONNX without dependencies: pip install --no-deps onnx
  5. Follow the official instructions for installing Caffe2 on Raspbian. This process takes about two hours. You may need to add the caffe2 module path to the PYTHONPATH environment variable. For us, this was accomplished by export PYTHONPATH=$PYTHONPATH:/home/pi/caffe2/build
  6. Install the ONNX extension for Caffe2: pip install onnx-caffe2
  7. Install further requirements: pip install -r requirements_rpi.txt
  8. Install librosa: pip install --no-deps resampy librosa
  9. Try importing librosa: python -c "import librosa". It should throw an error regarding numba, since we haven't installed it.
  10. We haven't found a way to easily install numba on the RPi, so we need to remove it from resampy. For our setup, we needed to remove numba and @numba.jit from /home/pi/.local/lib/python2.7/site-packages/resampy/interpn.py
  11. All dependencies should now be installed. We should try deploying an ONNX model.
  12. Fetch the models and data: ./fetch_data.sh
  13. In config.json, change backend to caffe2 and model_path to model/google-speech-dataset-full.onnx.
  14. Deploy the server: python . If there are no errors, you have successfully deployed the model, accessible via port 16888 by default.
  15. Run the speech commands demo: python utils/speech_demo.py. You'll need a working microphone and speakers. If you're interacting with your RPi remotely, you can run the speech demo locally and specify the remote endpoint --server-endpoint=http://[RPi IP address]:16888.

Utilities

QA client

Unfortunately, the QA client has no support for the general public yet, since it requires a custom QA service. However, it can still be used to retarget the command keyword.

python client.py runs the QA client. You may retarget a keyword by doing python client.py --mode=retarget. Please note that text-to-speech may not work well on Linux distros; in this case, please supply IBM Watson credentials via --watson-username and --watson--password. You can view all the options by doing python client.py -h.

Training and evaluating the model

CNN models. python -m utils.train --type [train|eval] trains or evaluates the model. It expects all training examples to follow the same format as that of Speech Commands Dataset. The recommended workflow is to download the dataset and add custom keywords, since the dataset already contains many useful audio samples and background noise.

Residual models. We recommend the following hyperparameters for training any of our res{8,15,26}[-narrow] models on the Speech Commands Dataset:

python -m utils.train --wanted_words yes no up down left right on off stop go --dev_every 1 --n_labels 12 --n_epochs 26 --weight_decay 0.00001 --lr 0.1 0.01 0.001 --schedule 3000 6000 --model res{8,15,26}[-narrow]

For more information about our deep residual models, please see our paper:

There are command options available:

option input format default description
--audio_preprocess_type {MFCCs, PCEN} MFCCs type of audio preprocess to use
--batch_size [1, n) 100 the mini-batch size to use
--cache_size [0, inf) 32768 number of items in audio cache, consumes around 32 KB * n
--conv1_pool [1, inf) [1, inf) 2 2 the width and height of the pool filter
--conv1_size [1, inf) [1, inf) 10 4 the width and height of the conv filter
--conv1_stride [1, inf) [1, inf) 1 1 the width and length of the stride
--conv2_pool [1, inf) [1, inf) 1 1 the width and height of the pool filter
--conv2_size [1, inf) [1, inf) 10 4 the width and height of the conv filter
--conv2_stride [1, inf) [1, inf) 1 1 the width and length of the stride
--data_folder string /data/speech_dataset path to data
--dev_every [1, inf) 10 dev interval in terms of epochs
--dev_pct [0, 100] 10 percentage of total set to use for dev
--dropout_prob [0.0, 1.0) 0.5 the dropout rate to use
--gpu_no [-1, n] 1 the gpu to use
--group_speakers_by_id {true, false} true whether to group speakers across train/dev/test
--input_file string the path to the model to load
--input_length [1, inf) 16000 the length of the audio
--lr (0.0, inf) {0.1, 0.001} the learning rate to use
--type {train, eval} train the mode to use
--model string cnn-trad-pool2 one of cnn-trad-pool2, cnn-tstride-{2,4,8}, cnn-tpool{2,3}, cnn-one-fpool3, cnn-one-fstride{4,8}, res{8,15,26}[-narrow], cnn-trad-fpool3, cnn-one-stride1
--momentum [0.0, 1.0) 0.9 the momentum to use for SGD
--n_dct_filters [1, inf) 40 the number of DCT bases to use
--n_epochs [0, inf) 500 number of epochs
--n_feature_maps [1, inf) {19, 45} the number of feature maps to use for the residual architecture
--n_feature_maps1 [1, inf) 64 the number of feature maps for conv net 1
--n_feature_maps2 [1, inf) 64 the number of feature maps for conv net 2
--n_labels [1, n) 4 the number of labels to use
--n_layers [1, inf) {6, 13, 24} the number of convolution layers for the residual architecture
--n_mels [1, inf) 40 the number of Mel filters to use
--no_cuda switch false whether to use CUDA
--noise_prob [0.0, 1.0] 0.8 the probability of mixing with noise
--output_file string model/google-speech-dataset.pt the file to save the model to
--seed (inf, inf) 0 the seed to use
--silence_prob [0.0, 1.0] 0.1 the probability of picking silence
--test_pct [0, 100] 10 percentage of total set to use for testing
--timeshift_ms [0, inf) 100 time in milliseconds to shift the audio randomly
--train_pct [0, 100] 80 percentage of total set to use for training
--unknown_prob [0.0, 1.0] 0.1 the probability of picking an unknown word
--wanted_words string1 string2 ... stringn command random the desired target words

JavaScript-based Keyword Spotting

Honkling is a JavaScript implementation of Honk. With Honkling, it is possible to implement various web applications with in-browser keyword spotting functionality.

Keyword Spotting Data Generator

In order to improve the flexibility of Honk and Honkling, we provide a program that constructs a dataset from youtube videos. Details can be found in keyword_spotting_data_generator folder

Recording audio

You may do the following to record sequential audio and save to the same format as that of speech command dataset:

python -m utils.record

Input return to record, up arrow to undo, and "q" to finish. After one second of silence, recording automatically halts.

Several options are available:

--output-begin-index: Starting sequence number
--output-prefix: Prefix of the output audio sequence
--post-process: How the audio samples should be post-processed. One or more of "trim" and "discard_true".

Post-processing consists of trimming or discarding "useless" audio. Trimming is self-explanatory: the audio recordings are trimmed to the loudest window of x milliseconds, specified by --cutoff-ms. Discarding "useless" audio (discard_true) uses a pre-trained model to determine which samples are confusing, discarding correctly labeled ones. The pre-trained model and correct label are defined by --config and --correct-label, respectively.

For example, consider python -m utils.record --post-process trim discard_true --correct-label no --config config.json. In this case, the utility records a sequence of speech snippets, trims them to one second, and finally discards those not labeled "no" by the model in config.json.

Listening to sound level

python manage_audio.py listen

This assists in setting sane values for --min-sound-lvl for recording.

Generating contrastive examples

python manage_audio.py generate-contrastive --directory [directory] generates contrastive examples from all .wav files in [directory] using phonetic segmentation.

Trimming audio

Speech command dataset contains one-second-long snippets of audio.

python manage_audio.py trim --directory [directory] trims to the loudest one-second for all .wav files in [directory]. The careful user should manually check all audio samples using an audio editor like Audacity.

Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
MohammadReza Sharifi 27 Dec 13, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022