Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

Related tags

Deep Learningcrest
Overview

CReST in Tensorflow 2

Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille and Fan Yang.

  • This is not an officially supported Google product.

Install dependencies

sudo apt install python3-dev python3-virtualenv python3-tk imagemagick
virtualenv -p python3 --system-site-packages env3
. env3/bin/activate
pip install -r requirements.txt
  • The code has been tested on Ubuntu 18.04 with CUDA 10.2.

Environment setting

. env3/bin/activate
export ML_DATA=/path/to/your/data
export ML_DIR=/path/to/your/code
export RESULT=/path/to/your/result
export PYTHONPATH=$PYTHONPATH:$ML_DIR

Datasets

Download or generate the datasets as follows:

  • CIFAR10 and CIFAR100: Follow the steps to download and generate balanced CIFAR10 and CIFAR100 datasets. Put it under ${ML_DATA}/cifar, for example, ${ML_DATA}/cifar/cifar10-test.tfrecord.
  • Long-tailed CIFAR10 and CIFAR100: Follow the steps to download the datasets prepared by Cui et al. Put it under ${ML_DATA}/cifar-lt, for example, ${ML_DATA}/cifar-lt/cifar-10-data-im-0.1.

Running experiment on Long-tailed CIFAR10, CIFAR100

Run MixMatch (paper) and FixMatch (paper):

  • Specify method to run via --method. It can be fixmatch or mixmatch.

  • Specify dataset via --dataset. It can be cifar10lt or cifar100lt.

  • Specify the class imbalanced ratio, i.e., the number of training samples from the most minority class over that from the most majority class, via --class_im_ratio.

  • Specify the percentage of labeled data via --percent_labeled.

  • Specify the number of generations for self-training via --num_generation.

  • Specify whether to use distribution alignment via --do_distalign.

  • Specify the initial distribution alignment temperature via --dalign_t.

  • Specify how distribution alignment is applied via --how_dalign. It can be constant or adaptive.

    python -m train_and_eval_loop \
      --model_dir=/tmp/model \
      --method=fixmatch \
      --dataset=cifar10lt \
      --input_shape=32,32,3 \
      --class_im_ratio=0.01 \
      --percent_labeled=0.1 \
      --fold=1 \
      --num_epoch=64 \
      --num_generation=6 \
      --sched_level=1 \
      --dalign_t=0.5 \
      --how_dalign=adaptive \
      --do_distalign=True

Results

The code reproduces main results of the paper. For all settings and methods, we run experiments on 5 different folds and report the mean and standard deviations. Note that the numbers may not exactly match those from the papers as there are extra randomness coming from the training.

Results on Long-tailed CIFAR10 with 10% labeled data (Table 1 in the paper).

gamma=50 gamma=100 gamma=200
FixMatch 79.4 (0.98) 66.2 (0.83) 59.9 (0.44)
CReST 83.7 (0.40) 75.4 (1.62) 63.9 (0.67)
CReST+ 84.5 (0.41) 77.7 (1.22) 67.5 (1.36)

Training with Multiple GPUs

  • Simply set CUDA_VISIBLE_DEVICES=0,1,2,3 or any number of GPUs.
  • Make sure that batch size is divisible by the number of GPUs.

Augmentation

  • One can concatenate different augmentation shortkeys to compose an augmentation sequence.
    • d: default augmentation, resize and shift.
    • h: horizontal flip.
    • ra: random augment with all augmentation ops.
    • rc: random augment with color augmentation ops only.
    • rg: random augment with geometric augmentation ops only.
    • c: cutout.
    • For example, dhrac applies shift, flip, random augment with all ops, followed by cutout.

Citing this work

@article{wei2021crest,
    title={CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning},
    author={Chen Wei and Kihyuk Sohn and Clayton Mellina and Alan Yuille and Fan Yang},
    journal={arXiv preprint arXiv:2102.09559},
    year={2021},
}
Owner
Google Research
Google Research
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022