Benchmark for evaluating open-ended generation

Overview

OpenMEVA

Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging.

OpenMEVA is a benchmark for evaluating open-ended story generation metrics (Please refer to the Paper List for more information about Open-eNded Language Generation tasks) described in the paper: OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics (ACL 2021 Long Paper). Besides, OpenMEVA also provides an open-source and extensible toolkit for metric implementation, evaluation, comparison, and analysis, as well as data perturbation techniques to help generate large numbers of customized test cases. We expect the toolkit to empower fast development of automatic metrics.

Contents

Introduction for Language Generation Evaluation

Since human evaluation is time-consuming, expensive, and difficult to reproduce, the community commonly uses automatic metrics for evaluation. We roughly divide existing metrics as follows:

  • Previous studies in conditional language generation tasks (e.g., machine translation) have developed several successful referenced metrics, which roughly quantify the lexical overlap (e.g., BLEU) or semantic entailment (e.g., BertScore) between a generated sample and the reference.
  • Referenced metrics correlate poorly with human judgments when evaluating open-ended language generation. Specifically, a generated sample can be reasonable if it is coherent to the given input, and self-consistent within its own context but not necessarily being similar to the reference in literal or semantics. To address the one-to-many issue, unreferenced metrics (e.g., UNION) are proposed to measure the quality of a generated sample without any reference.
  • Besides, some researchers propose to combine referenced and unreferenced metrics, i.e. hybrid metrics, which usually average two individual metric scores (e.g. RUBER) or learn from human preference (e.g., ADEM). However, ADEM is reported to lack generalization and robustness with limited human annotation.

The existing generation models are still far from human ability to generate reasonable texts, particularly for open-ended language generation tasks such as story generation. One important factor that hinders the research is the lack of powerful metrics for measuring generation quality. Therefore, we propose OpenMEVA as the standard paradigm for measuring progress of metrics.

Install

Clone the repository from our github page (don't forget to star us!)

git clone https://github.com/thu-coai/OpenMEVA.git

Then install all the requirements:

pip install -r requirements.txt

Then install the package with

python setup.py install

If you also want to modify the code, run this:

python setup.py develop

Toolkit

I. Metrics Interface

1. Metric List

We publish the standard implementation for the following metrics:

2. Usage

It is handy to construct a metric object and use it to evaluate given examples:

from eva.bleu import BLEU
metric = BLEU()

# for more information about the metric
print(metric.info)

# data is a list of dictionary [{"context": ..., "candidate":..., "reference": ...}]
print(metric.compute(data))

We present a python file test.py as an instruction to access the API.

These metrics are not exhaustive, it is a starting point for further metric research. We welcome any pull request for other metrics (requiring implementation of only three methods including __init__, info, compute).

3. Training Learnable Metrics

Execute the following command for training learnable metrics:

cd ./eva/model

# training language model for computing forward perplexity
bash ./run_language_modeling.sh

# training the unreferenced model for computing RUBER (RNN version)
bash ./run_ruber_unrefer.sh

# training the unreferenced model for computing RUBER (BERT version)
bash ./run_ruber_unrefer_bert.sh

# training the model for computing UNION
bash ./run_union.sh

II. Evaluating Human Scores

The python file test.py also includes detailed instruction to access the API for evaluating human scores.

1. Constructing

from eva.heva import Heva

# list of all possible human scores (int/float/str).
all_possible_score_list = [1,2,3,4,5]

# construct an object for following evaluation
heva = Heva(all_possible_score_list)

2. Consistency of human scores

# list of human score list, each row includes all the human scores for an example
human_score_list = [[1,3,2], [1,3,3], [2,3,1], ...]

print(heva.consistency(human_score_list))
# {"Fleiss's kappa": ..., "ICC correlation": ..., "Kendall-w":..., "krippendorff's alpha":...}
# the results includes correlation and p-value for significance test.

3. Mean Test for scores of examples from different source

# list of metric scores (float)
metric_score_1, metric_score_2 = [3.2, 2.4, 3.1,...], [3.5, 1.2, 2.3, ...]

# T-test for the means of two independent samples of scores.
print(heva.mean_test(metric_score_1, metric_score_2))
# {"t-statistic": ..., "p-value": ...}

4. Distribution of human scores

# list of human scores (float)
human_score = [2.0, 4.2, 1.2, 4.9, 2.6, 3.1, 4.0, 1.5,...]

# path for saving the figure of distribution
figure_path = "./figure"

# indicating the source of the annotated examples. default: ""
model_name = "gpt"

# plot the figure of distribution of human scores
heva.save_distribution_figure(score=human_score, save_path=figure_path, model_name=model_name, ymin=0, ymax=50)

5. Correlation between human and metric scores

# list of human scores (float)
human_score = [2.0, 4.2, 1.2, 4.9, 2.6, 3.1, 4.0, 1.5,...]

# list of metric scores (float)
metric_score = [3.2, 2.4, 3.1, 3.5, 1.2, 2.3, 3.5, 1.1,...]

# computing correlation
print(heva.correlation(metric_score, human_score))

# path for saving the figure of distribution
figure_path = "./figure"

# indicating the source of the metric scores. default: ""
metric_name = "bleu"

# plot the figure of metric score vs. human scores
heva.save_correlation_figure(human_score, metric_score, save_path=figure_path, metric_name=metric_name)

III. Perturbation Techniques

1. Perturbation List

We provide perturbation techniques in following aspects to create large scale test cases for evaluating comprehensive capabilities of metrics:

  • Lexical repetition

    • Repeating n-grams or sentences:

      He stepped on the stage and stepped on the stage.
  • Semantic repetition:

    • Repeating sentences with paraphrases by back translation:

      He has been from Chicago to Florida. He moved to Florida from Chicago.

  • Character behavior:

    • Reordering the subject and object of a sentence:

      Lars looked at the girl with desire.→ the girl looked at Lars with desire.
    • Substituting the personal pronouns referring to other characters:

      her mother took them to ... → their mother took her to ...
  • Common sense:

    • Substituting the head or tail entities in a commonsense triple of ConcepNet:

      Martha puts her dinner into theoven. She lays down fora quick nap. She oversleeps and runs into the kitchen (→ garden) to take out her burnt dinne.
  • Consistency:

    • Inserting or Deleting negated words or prefixes:

      She had (→ did not have) money to get vaccinated. She had a flu shot ...
      She agreed (→ disagreed) to get vaccinated.
    • Substituting words with antonyms:

      She is happy (→ upset) that she had a great time ...
  • Coherence:

    • Substituting words, phrases or sentences:

      Christmas was very soon. Kelly wanted to put up the Christmas tree. (→ Eventually it went into remission.)
  • Causal Relationship:

    • Reordering the cause and effect:

      the sky was clear so he could see clearly the boat. → he could see clearly the boat so the sky was clear.
    • Substituting the causality-related words randomly:

      the sky was clear so (→ because) he could see clearly the boat.
  • Temporal Relationship:

    • Reordering two sequential events:

      I eat one bite. Then I was no longer hungry.I was no longer hungry. Then I eat one bite.
    • Substituting the time-related words:

      After (→ Before) eating one bite I was no longer hungry.
  • Synonym:

    • Substituting a word with its synonym:

      I just purchased (→ bought) my uniforms.
  • Paraphrase:

    • Substituting a sentence with its paraphrase by back translation:

      Her dog doesn't shiver anymore.Her dog stops shaking.
  • Punctuation:

    • Inserting or Deleting inessential punctuation mark:

      Eventually,Eventually he became very hungry.
  • Contraction:

    • Contracting or Expanding contraction:

      I’ll (→ I will) have to keep waiting .
  • Typo:

    • Swapping two adjacent characters:

      that orange (→ ornage) broke her nose.
    • Repeating or Deleting a character:

      that orange (→ orannge) broke her nose.

2. Usage

It is handy to construct a perturbation object and use it to perturb given examples:

from eva.perturb.perturb import *
custom_name = "story"
method = add_typos(custom_name)

# data is a list of dictionary [{"id":0, "ipt": ..., "truth":...}, ...]
print(method.construct(data))
# the perturbed examples can be found under the directory "custom_name"

We present a python file test_perturb.py as an instruction to access the API.

You can download dependent files for some perturbation techniques by executing the following command:

cd ./eva/perturb
bash ./download.sh

You can also download them by THUCloud or Google Drive.

These perturbation techniques are not exhaustive, it is a starting point for further evaluation research. We welcome any pull request for other perturbation techniques (requiring implementation of only two methods including __init__, construct).

Note 📑 We adopt uda for back translation. We provide an example eva/perturb/back_trans_data/story_bt.json to indicate the format of the back translation result. And you can download the results for ROCStories and WritingPrompts by THUCloud or Google Drive.

Benchmark

I. Datasets

1. Machine-Generated Stories (MAGS) with manual annotation

We provide annotated stories from ROCStories (ROC) and WritingPrompts (WP). Some statistics are as follows:

Boxplot of annotation scores for each story source (Left: ROC, Right: WP):

2. Auto-Constructed Stories (ACTS)

We create large-scale test examples based on ROC and WP by aforementioned perturbation techniques. ACTS includes examples for different test types, i.e., discrimination test and invariance test.

  • The discrimination test requires metrics to distinguish human-written positive examples from negative ones. Wecreate each negative example by applying pertur-bation within an individual aspect. Besides, we also select different positive examples targeted for corresponding aspects. Below table shows the numbers of positive and negative examples in different aspects.

  • The invariance test expect the metric judgments to remain the same when we apply rationality-preserving perturbations, which means almost no influence on the quality of examples. The original examples can be either the human-written stories or the negative examples created in the discrimination test. Below table shows the numbers of original (also perturbed) positive and negative examples in different aspects.

3. Download & Data Instruction

You can download the whole dataset by THUCloud or Google Drive.

├── data
   └── `mags_data`
       ├── `mags_roc.json`	# sampled stories and corresponding human annotation.   
       ├── `mags_wp.json`		# sampled stories and corresponding human annotation.       
   └── `acts_data`
       ├── `roc`
              └── `roc_train_ipt.txt`	# input for training set
              └── `roc_train_opt.txt`	# output for training set
              └── `roc_valid_ipt.txt`	# input for validation set
              └── `roc_valid_opt.txt`	# output for validation set
              └── `roc_test_ipt.txt`	# input for test set
              └── `roc_test_opt.txt`	# output for test set
              └── `discrimination_test`                        
                 ├── `roc_lexical_rept.txt`
                 ├── `roc_lexical_rept_perturb.txt`										
                 ├── `roc_semantic_rept.txt`
                 ├── `roc_semantic_rept_perturb.txt`
                 ├── `roc_character.txt`
                 ├── `roc_character_perturb.txt`
                 ├── `roc_commonsense.txt`
                 ├── `roc_commonsense_perturb.txt`												
                 ├── `roc_coherence.txt`
                 ├── `roc_coherence_perturb.txt`
                 ├── `roc_consistency.txt`
                 ├── `roc_consistency_perturb.txt`								
                 ├── `roc_cause.txt`
                 ├── `roc_cause_perturb.txt`       										
                 ├── `roc_time.txt`
                 ├── `roc_time_perturb.txt`                    
              └── `invariance_test`
                 ├── `roc_synonym_substitute_perturb.txt`
                 ├── `roc_semantic_substitute_perturb.txt`
                 ├── `roc_contraction_perturb.txt`
                 ├── `roc_delete_punct_perturb.txt`
                 ├── `roc_typos_perturb.txt`
                 ├── `roc_negative_sample.txt`	# sampled negative samples from the discrimination test.	
                 ├── `roc_negative_sample_synonym_substitute_perturb.txt`
                 ├── `roc_negative_sample_semantic_substitute_perturb.txt`
                 ├── `roc_negative_sample_contraction_perturb.txt`
                 ├── `roc_negative_sample_delete_punct_perturb.txt`
                 ├── `roc_negative_sample_typos_perturb.txt`
       ├── `wp`
              └── ...

II. Tasks

OpenMEVA includes a suite of tasks to test comprehensive capabilities of metrics:

1. Correlation with human scores (based on MAGS)

2. Generalization across generation models and dataset (for learnable metrics, based on MAGS)

3. Judgment in general linguistic features (based on the discrimination test set of ACTS)

4. Robustness to rationality-preserving perturbations (based on the invariance test set of ACTS)

Note: The smaller absolute value of correlation is the better.

5. Fast Test

You can test these capabilities of new metrics by following command:

cd ./benchmark

# test correlation with human scores and generalization
python ./corr_gen.py

# test judgment
python ./judge.py

# test robustness
python ./robust.py

We take BLEU and Forward Perplexity as examples in the python files. You can test your own metrics by minor modification.

How to Cite

@misc{guan2021openmeva,
      title={OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics}, 
      author={Jian Guan and Zhexin Zhang and Zhuoer Feng and Zitao Liu and Wenbiao Ding and Xiaoxi Mao and Changjie Fan and Minlie Huang},
      year={2021},
      eprint={2105.08920},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

It's our honor to help you better explore language generation evaluation with our toolkit and benchmark.

Owner
Conversational AI groups from Tsinghua University
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022