Tree Nested PyTorch Tensor Lib

Overview

DI-treetensor

PyPI PyPI - Python Version Loc Comments

Docs Deploy Code Test Badge Creation Package Release codecov

GitHub stars GitHub forks GitHub commit activity GitHub issues GitHub pulls Contributors GitHub license

treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors.

Almost all the operation can be supported in form of trees in a convenient way to simplify the structure processing when the calculation is tree-based.

Installation

You can simply install it with pip command line from the official PyPI site.

pip install di-treetensor

For more information about installation, you can refer to Installation.

Documentation

The detailed documentation are hosted on https://opendilab.github.io/DI-treetensor.

Only english version is provided now, the chinese documentation is still under development.

Quick Start

You can easily create a tree value object based on FastTreeValue.

import builtins
import os
from functools import partial

import treetensor.torch as torch

print = partial(builtins.print, sep=os.linesep)

if __name__ == '__main__':
    # create a tree tensor
    t = torch.randn({'a': (2, 3), 'b': {'x': (3, 4)}})
    print(t)
    print(torch.randn(4, 5))  # create a normal tensor
    print()

    # structure of tree
    print('Structure of tree')
    print('t.a:', t.a)  # t.a is a native tensor
    print('t.b:', t.b)  # t.b is a tree tensor
    print('t.b.x', t.b.x)  # t.b.x is a native tensor
    print()

    # math calculations
    print('Math calculation')
    print('t ** 2:', t ** 2)
    print('torch.sin(t).cos()', torch.sin(t).cos())
    print()

    # backward calculation
    print('Backward calculation')
    t.requires_grad_(True)
    t.std().arctan().backward()
    print('grad of t:', t.grad)
    print()

    # native operation
    # all the ops can be used as the original usage of `torch`
    print('Native operation')
    print('torch.sin(t.a)', torch.sin(t.a))  # sin of native tensor

The result should be

<Tensor 0x7f0dae602760>
├── a --> tensor([[-1.2672, -1.5817, -0.3141],
│                 [ 1.8107, -0.1023,  0.0940]])
└── b --> <Tensor 0x7f0dae602820>
    └── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
                      [ 1.5956,  0.8825, -0.5702, -0.2247],
                      [ 0.9235,  0.4538,  0.8775, -0.2642]])

tensor([[-0.9559,  0.7684,  0.2682, -0.6419,  0.8637],
        [ 0.9526,  0.2927, -0.0591,  1.2804, -0.2455],
        [ 0.4699, -0.9998,  0.6324, -0.6885,  1.1488],
        [ 0.8920,  0.4401, -0.7785,  0.5931,  0.0435]])

Structure of tree
t.a:
tensor([[-1.2672, -1.5817, -0.3141],
        [ 1.8107, -0.1023,  0.0940]])
t.b:
<Tensor 0x7f0dae602820>
└── x --> tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
                  [ 1.5956,  0.8825, -0.5702, -0.2247],
                  [ 0.9235,  0.4538,  0.8775, -0.2642]])

t.b.x
tensor([[ 1.2224, -0.3445, -0.9980, -0.4085],
        [ 1.5956,  0.8825, -0.5702, -0.2247],
        [ 0.9235,  0.4538,  0.8775, -0.2642]])

Math calculation
t ** 2:
<Tensor 0x7f0dae602eb0>
├── a --> tensor([[1.6057, 2.5018, 0.0986],
│                 [3.2786, 0.0105, 0.0088]])
└── b --> <Tensor 0x7f0dae60c040>
    └── x --> tensor([[1.4943, 0.1187, 0.9960, 0.1669],
                      [2.5458, 0.7789, 0.3252, 0.0505],
                      [0.8528, 0.2059, 0.7699, 0.0698]])

torch.sin(t).cos()
<Tensor 0x7f0dae621910>
├── a --> tensor([[0.5782, 0.5404, 0.9527],
│                 [0.5642, 0.9948, 0.9956]])
└── b --> <Tensor 0x7f0dae6216a0>
    └── x --> tensor([[0.5898, 0.9435, 0.6672, 0.9221],
                      [0.5406, 0.7163, 0.8578, 0.9753],
                      [0.6983, 0.9054, 0.7185, 0.9661]])


Backward calculation
grad of t:
<Tensor 0x7f0dae60c400>
├── a --> tensor([[-0.0435, -0.0535, -0.0131],
│                 [ 0.0545, -0.0064, -0.0002]])
└── b --> <Tensor 0x7f0dae60cbe0>
    └── x --> tensor([[ 0.0357, -0.0141, -0.0349, -0.0162],
                      [ 0.0476,  0.0249, -0.0213, -0.0103],
                      [ 0.0262,  0.0113,  0.0248, -0.0116]])


Native operation
torch.sin(t.a)
tensor([[-0.9543, -0.9999, -0.3089],
        [ 0.9714, -0.1021,  0.0939]], grad_fn=<SinBackward>)

For more quick start explanation and further usage, take a look at:

Extension

If you need to translate treevalue object to runnable source code, you may use the potc-treevalue plugin with the installation command below

pip install DI-treetensor[potc]

In potc, you can translate the objects to runnable python source code, which can be loaded to objects afterwards by the python interpreter, like the following graph

potc_system

For more information, you can refer to

Contribution

We appreciate all contributions to improve DI-treetensor, both logic and system designs. Please refer to CONTRIBUTING.md for more guides.

And users can join our slack communication channel, or contact the core developer HansBug for more detailed discussion.

License

DI-treetensor released under the Apache 2.0 license.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

 (Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Code to reproduce the results in the paper
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-based RL algorithms with only a few lines of code.

OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

Comments
  • PyTorch OP List(P0)

    PyTorch OP List(P0)

    reference: https://pytorch.org/docs/1.8.0/torch.html

    common

    • [x] numel
    • [x] cpu
    • [x] cuda
    • [x] to

    Creation Ops

    • [x] torch.zeros_like
    • [x] torch.randn_like
    • [x] torch.randint_like
    • [x] torch.ones_like
    • [x] torch.full_like
    • [x] torch.empty_like
    • [x] torch.zeros
    • [x] torch.randn
    • [x] torch.randint
    • [x] torch.ones
    • [x] torch.full
    • [x] torch.empty

    Indexing, Slicing, Joining, Mutating Ops

    • [x] cat
    • [x] chunk
    • [ ] gather
    • [x] index_select
    • [x] masked_select
    • [x] reshape
    • [ ] scatter
    • [x] split
    • [x] squeeze
    • [x] stack
    • [ ] tile
    • [ ] unbind
    • [x] unsqueeze
    • [x] where

    Math Ops

    Pointwise Ops
    • [x] add
    • [x] sub
    • [x] mul
    • [x] div
    • [x] pow
    • [x] neg
    • [x] abs
    • [x] sign
    • [x] floor
    • [x] ceil
    • [x] round
    • [x] sigmoid
    • [x] clamp
    • [x] exp
    • [x] exp2
    • [x] sqrt
    • [x] log
    • [x] log10
    • [x] log2
    Reduction Ops
    • [ ] argmax
    • [ ] argmin
    • [x] all
    • [x] any
    • [x] max
    • [x] min
    • [x] dist
    • [ ] logsumexp
    • [x] mean
    • [ ] median
    • [x] norm
    • [ ] prod
    • [x] std
    • [x] sum
    • [ ] unique
    Comparison Ops
    • [ ] argsort
    • [x] eq
    • [x] ge
    • [x] gt
    • [x] isfinite
    • [x] isinf
    • [x] isnan
    • [x] le
    • [x] lt
    • [x] ne
    • [ ] sort
    • [ ] topk
    Other Ops
    • [ ] cdist
    • [x] clone
    • [ ] flip

    BLAS and LAPACK Ops

    • [ ] addbmm
    • [ ] addmm
    • [ ] bmm
    • [x] dot
    • [x] matmul
    • [x] mm
    enhancement 
    opened by PaParaZz1 3
  • PyTorch OP Doc List

    PyTorch OP Doc List

    P0

    • [x] cpu
    • [x] cuda
    • [x] to
    • [x] torch.zeros_like
    • [x] torch.randn_like
    • [x] torch.ones_like
    • [x] torch.zeros
    • [x] torch.randn
    • [x] torch.randint
    • [x] torch.ones
    • [x] cat
    • [x] reshape
    • [x] split
    • [x] squeeze
    • [x] stack
    • [x] unsqueeze
    • [x] where
    • [x] abs
    • [x] add
    • [x] clamp
    • [x] div
    • [x] exp
    • [x] log
    • [x] sqrt
    • [x] sub
    • [x] sigmoid
    • [x] pow
    • [x] mul
    • [ ] argmax
    • [ ] argmin
    • [x] all
    • [x] any
    • [x] max
    • [x] min
    • [x] dist
    • [x] mean
    • [x] std
    • [x] sum
    • [x] eq
    • [x] ge
    • [x] gt
    • [x] le
    • [x] lt
    • [x] ne
    • [x] clone
    • [x] dot
    • [x] matmul
    • [x] mm

    P1

    • [x] numel
    • [x] torch.randint_like
    • [x] torch.full_like
    • [x] torch.empty_like
    • [x] torch.full
    • [x] torch.empty
    • [x] chunk
    • [ ] gather
    • [x] index_select
    • [x] masked_select
    • [ ] scatter
    • [ ] tile
    • [ ] unbind
    • [x] ceil
    • [x] exp2
    • [x] floor
    • [x] log10
    • [x] log2
    • [x] neg
    • [x] round
    • [x] sign
    • [ ] bmm

    P2

    • [ ] logsumexp
    • [ ] median
    • [x] norm
    • [ ] prod
    • [ ] unique
    • [ ] argsort
    • [x] isfinite
    • [x] isinf
    • [x] isnan
    • [ ] sort
    • [ ] topk
    • [ ] cdist
    • [ ] flip
    • [ ] addbmm
    • [ ] addmm
    opened by PaParaZz1 2
  • dev(hansbug): add stream support for paralleling the calculations in tree

    dev(hansbug): add stream support for paralleling the calculations in tree

    Here is an example:

    import time
    
    import numpy as np
    import torch
    
    import treetensor.torch as ttorch
    
    N, M, T = 200, 2, 50
    S1, S2, S3 = 512, 1024, 2048
    
    
    def test_min():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N // M)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N // M)}, device='cuda')
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_native():
        a = {f'a{i}': torch.randn(S1, S2, device='cuda') for i in range(N)}
        b = {f'a{i}': torch.randn(S2, S3, device='cuda') for i in range(N)}
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            for key in a.keys():
                _ = torch.matmul(a[key], b[key])
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_linear():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N)}, device='cuda')
    
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def test_stream():
        a = ttorch.randn({f'a{i}': (S1, S2) for i in range(N)}, device='cuda')
        b = ttorch.randn({f'a{i}': (S2, S3) for i in range(N)}, device='cuda')
    
        ttorch.stream(M)
        result = []
        for i in range(T):
            _start_time = time.time()
    
            _ = ttorch.matmul(a, b)
            torch.cuda.synchronize()
    
            _end_time = time.time()
            result.append(_end_time - _start_time)
    
        print('time cost: mean({}) std({})'.format(np.mean(result), np.std(result)))
    
    
    def warmup():
        # warm up
        a = torch.randn(1024, 1024).cuda()
        b = torch.randn(1024, 1024).cuda()
        for _ in range(20):
            c = torch.matmul(a, b)
    
    
    if __name__ == '__main__':
        warmup()
        test_min()
        test_native()
        test_linear()
        test_stream()
    
    

    不过讲真,这个stream实际效果挺脆弱的,非常看tensor尺寸,大了小了都不行,GPU性能不够也不行,一弄不好还容易负优化,总之挺难伺候的。这部分如果想实用化的话得再研究研究。

    enhancement 
    opened by HansBug 1
  • Failure when try to convert between numpy and torch on Windows Python3.10

    Failure when try to convert between numpy and torch on Windows Python3.10

    See here: https://github.com/opendilab/DI-treetensor/runs/7820313811?check_suite_focus=true

    The bug is like

        @method_treelize(return_type=_get_tensor_class)
        def tensor(self: numpy.ndarray, *args, **kwargs):
    >       tensor_: torch.Tensor = torch.from_numpy(self)
    E       RuntimeError: Numpy is not available
    

    The only way I found to 'solve' this is to downgrade python to version3.9 to lower. So these tests will be skipped temporarily.

    bug 
    opened by HansBug 0
Releases(v0.4.0)
  • v0.4.0(Aug 14, 2022)

    What's Changed

    • dev(hansbug): remove support for py3.6 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/12
    • pytorch upgrade to 1.12 by @zjowowen in https://github.com/opendilab/DI-treetensor/pull/11
    • dev(hansbug): add test for torch1.12.0 and python3.10 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/13
    • dev(hansbug): add stream support for paralleling the calculations in tree by @HansBug in https://github.com/opendilab/DI-treetensor/pull/10

    New Contributors

    • @zjowowen made their first contribution in https://github.com/opendilab/DI-treetensor/pull/11

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.3.0...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jul 15, 2022)

    What's Changed

    • dev(hansbug): use newer version of treevalue 1.4.1 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/9

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.2.1...v0.3.0

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Mar 22, 2022)

    What's Changed

    • fix(hansbug): fix uncompitable problem with walk by @HansBug in https://github.com/opendilab/DI-treetensor/pull/5
    • dev(hansbug): add tensor method for treetensor.numpy.ndarray by @HansBug in https://github.com/opendilab/DI-treetensor/pull/6
    • fix(hansbug): add subside support to all the functions. by @HansBug in https://github.com/opendilab/DI-treetensor/pull/7
    • doc(hansbug): add documentation for np.stack, np.split and other 3 functions. by @HansBug in https://github.com/opendilab/DI-treetensor/pull/8
    • release(hansbug): use version 0.2.1 by @HansBug in https://github.com/opendilab/DI-treetensor/pull/4

    New Contributors

    • @HansBug made their first contribution in https://github.com/opendilab/DI-treetensor/pull/5

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.2.0...v0.2.1

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 4, 2022)

    • Use newer version of treevalue>=1.2.0
    • Add support of torch 1.10.0
    • Add support of potc

    Full Changelog: https://github.com/opendilab/DI-treetensor/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Dec 26, 2021)

  • v0.0.1(Sep 30, 2021)

Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022