Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

Overview

IterMVS

official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

Introduction

IterMVS is a novel learning-based MVS method combining highest efficiency and competitive reconstruction quality. We propose a novel GRU-based estimator that encodes pixel-wise probability distributions of depth in its hidden state. Ingesting multi-scale matching information, our model refines these distributions over multiple iterations and infers depth and confidence. Extensive experiments on DTU, Tanks & Temples and ETH3D show highest efficiency in both memory and run-time, and a better generalization ability than many state-of-the-art learning-based methods.

If you find this project useful for your research, please cite:

@misc{wang2021itermvs,
      title={IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo}, 
      author={Fangjinhua Wang and Silvano Galliani and Christoph Vogel and Marc Pollefeys},
      year={2021},
      eprint={2112.05126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

Requirements

  • python 3.6
  • CUDA 10.1
pip install -r requirements.txt

Reproducing Results

root_directory
├──scan1 (scene_name1)
├──scan2 (scene_name2) 
      ├── images                 
      │   ├── 00000000.jpg       
      │   ├── 00000001.jpg       
      │   └── ...                
      ├── cams_1                   
      │   ├── 00000000_cam.txt   
      │   ├── 00000001_cam.txt   
      │   └── ...                
      └── pair.txt  

Camera file cam.txt stores the camera parameters, which includes extrinsic, intrinsic, minimum depth and maximum depth:

extrinsic
E00 E01 E02 E03
E10 E11 E12 E13
E20 E21 E22 E23
E30 E31 E32 E33

intrinsic
K00 K01 K02
K10 K11 K12
K20 K21 K22

DEPTH_MIN DEPTH_MAX 

pair.txt stores the view selection result. For each reference image, 10 best source views are stored in the file:

TOTAL_IMAGE_NUM
IMAGE_ID0                       # index of reference image 0 
10 ID0 SCORE0 ID1 SCORE1 ...    # 10 best source images for reference image 0 
IMAGE_ID1                       # index of reference image 1
10 ID0 SCORE0 ID1 SCORE1 ...    # 10 best source images for reference image 1 
...

Evaluation on DTU:

  • For DTU's evaluation set, first download our processed camera parameters from here. Unzip it and replace all the old camera files in the folders cams_1 with new files for all the scans.
  • In eval_dtu.sh, set DTU_TESTING as the root directory of corresponding dataset, set --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt).
  • Test on GPU by running bash eval_dtu.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For quantitative evaluation, download SampleSet and Points from DTU's website. Unzip them and place Points folder in SampleSet/MVS Data/. The structure looks like:
SampleSet
├──MVS Data
      └──Points

In evaluations/dtu/BaseEvalMain_web.m, set dataPath as the path to SampleSet/MVS Data/, plyPath as directory that stores the reconstructed point clouds and resultsPath as directory to store the evaluation results. Then run evaluations/dtu/BaseEvalMain_web.m in matlab.

The results look like:

Acc. (mm) Comp. (mm) Overall (mm)
0.373 0.354 0.363

Evaluation on Tansk & Temples:

  • In eval_tanks.sh, set TANK_TESTING as the root directory of the dataset and --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt). We also provide our pretrained model trained on BlendedMVS (checkpoints/blendedmvs/model_000015.ckpt)
  • Test on GPU by running bash eval_tanks.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For our detailed quantitative results on Tanks & Temples, please check the leaderboards (Tanks & Temples: trained on DTU, Tanks & Temples: trained on BlendedMVS).

Evaluation on ETH3D:

  • In eval_eth.sh, set ETH3D_TESTING as the root directory of the dataset and --outdir as the directory to store the reconstructed point clouds.
  • CKPT_FILE is the path of checkpoint file (default as our pretrained model which is trained on DTU, the path is checkpoints/dtu/model_000015.ckpt). We also provide our pretrained model trained on BlendedMVS (checkpoints/blendedmvs/model_000015.ckpt)
  • Test on GPU by running bash eval_eth.sh. The code includes depth map estimation and depth fusion. The outputs are the point clouds in ply format.
  • For our detailed quantitative results on ETH3D, please check the leaderboards (ETH3D: trained on DTU, ETH3D: trained on BlendedMVS).

Evaluation on custom dataset:

  • We support preparing the custom dataset from COLMAP's results. The script colmap_input.py (modified based on the script from MVSNet) converts COLMAP's sparse reconstruction results into the same format as the datasets that we provide.
  • Test on GPU by running bash eval_custom.sh.

Training

DTU

  • Download pre-processed DTU's training set (provided by PatchmatchNet). The dataset is already organized as follows:
root_directory
├──Cameras_1
├──Rectified
└──Depths_raw
  • Download our processed camera parameters from here. Unzip all the camera folders into root_directory/Cameras_1.
  • In train_dtu.sh, set MVS_TRAINING as the root directory of dataset; set --logdir as the directory to store the checkpoints.
  • Train the model by running bash train_dtu.sh.

BlendedMVS

  • Download the dataset.
  • In train_blend.sh, set MVS_TRAINING as the root directory of dataset; set --logdir as the directory to store the checkpoints.
  • Train the model by running bash train_blend.sh.

Acknowledgements

Thanks to Yao Yao for opening source of his excellent work MVSNet. Thanks to Xiaoyang Guo for opening source of his PyTorch implementation of MVSNet MVSNet-pytorch.

Owner
Fangjinhua Wang
Ph.D. sutdent in Computer Science; member of CVG; supervised by Prof. Marc Pollefeys
Fangjinhua Wang
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022