Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

Overview

Python 3.6

GUI for iVOS(interactive VOS) and GIS (Guided iVOS)

explain_qwerty GUI Implementation of

CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps"

ECCV2020 paper "Interactive Video Object Segmentation Using Global and Local Transfer Modules"

Githubs:
CVPR2021 / ECCV2020

Project Pages:
CVPR2021 / ECCV2020

Codes in this github:

  1. Real-world GUI evaluation on DAVIS2017 based on the DAVIS framework
  2. GUI for other videos

Prerequisite

  • cuda 11.0
  • python 3.6
  • pytorch 1.6.0
  • davisinteractive 1.0.4
  • numpy, cv2, PtQt5, and other general libraries of python3

Directory Structure

  • root/apps: QWidget apps.

  • root/checkpoints: save our checkpoints (pth extensions) here.

  • root/dataset_torch: pytorch datasets.

  • root/libs: library of utility files.

  • root/model_CVPR2021 : networks and GUI models for CVPR2021

  • root/model_ECCV2020 : networks and GUI models for ECCV2020

    • detailed explanations (including building correlation package) on [Github:ECCV2020]
  • root/eval_GIS_RS1.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_GIS_RS4.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_IVOS.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/IVOS_demo_customvideo.py : GUI for custom videos

Instruction

To run

  1. Edit eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py``IVOS_demo_customvideo.py to set the directory of your DAVIS2017 dataset and other configurations.
  2. Download our parameters and place the file as root/checkpoints/GIS-ckpt_standard.pth.
  3. Run eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py for real-world GUI evaluation on DAVIS2017 or
  4. Run IVOS_demo_customvideo.py to apply our method on the other videos

To use

explain_qwerty

Left click for the target object and right click for the background.

  1. Select any frame to interact by dragging the slidder under the main image
  2. Give interaction
  3. Run VOS
  4. Find worst frame (if GIS, a candidate frame-RS1 or frames-RS4 are given) and reinteract.
  5. Iterate until you get satisfied with VOS results.
  6. By selecting satisfied button, your evaluation result (consumed time and frames) will be recorded on root/results.

Reference

Please cite our paper if the implementations are useful in your work:

@Inproceedings{
Yuk2021GIS,
title={Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={CVPR},
year={2021},
url={https://openaccess.thecvf.com/content/CVPR2021/papers/Heo_Guided_Interactive_Video_Object_Segmentation_Using_Reliability-Based_Attention_Maps_CVPR_2021_paper.pdf}
}
@Inproceedings{
Yuk2020IVOS,
title={Interactive Video Object Segmentation Using Global and Local Transfer Modules},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={ECCV},
year={2020},
url={https://openreview.net/forum?id=bo_lWt_aA}
}

Our real-world evaluation demo is based on the GUI of IPNet:

@Inproceedings{
Oh2019IVOS,
title={Fast User-Guided Video Object Segmentation by Interaction-and-Propagation Networks},
author={Seoung Wug Oh and Joon-Young Lee and Seon Joo Kim},
booktitle={CVPR},
year={2019},
url={https://openaccess.thecvf.com/content_ICCV_2019/papers/Oh_Video_Object_Segmentation_Using_Space-Time_Memory_Networks_ICCV_2019_paper.pdf}
}
Owner
Yuk Heo
Computer Vision Engineer, Student of MCL at Korea University. Contact me via [e
Yuk Heo
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022