NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

Overview

OptiPrompt

This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall.

We propose OptiPrompt, a simple and effective approach for Factual Probing. OptiPrompt optimizes the prompts on the input embedding space directly. It outperforms previous prompting methods on the LAMA benchmark. Furthermore, in order to better interprete probing results, we propose control experiments based on the probing results on randomly initialized models. Please check our paper for details.

Quick links

Setup

Install dependecies

Our code is based on python 3.7. All experiments are run on a single GPU.

Please install all the dependency packages using the following command:

pip install -r requirements.txt

Download the data

We pack all datasets we used in our experiments here. Please download it and extract the files to ./data, or run the following commands to autoamtically download and extract it.

bash script/download_data.sh

The datasets are structured as below.

data
├── LAMA-TREx                         # The original LAMA-TREx test set (34,039 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx_UHN                     # The LAMA-TREx_UHN test set (27,102 examples)
│   ├── P17.jsonl                     # Testing file for the relation `P17`
│   └── ...
├── LAMA-TREx-easy-hard               # The easy and hard partitions of the LAMA-TREx dataset (check the paper for details)
│   ├── Easy                          # The LAMA-easy partition (10,546 examples)
│   │   ├── P17.jsonl                 # Testing file for the relation `P17`
│   │   └── ...
│   └── Hard                          # The LAMA-hard partition (23,493 examples)
│       ├── P17.jsonl                 # Testing file for the relation `P17`
│       └── ...
├── autoprompt_data                   # Training data collected by AutoPrompt
│   ├── P17                           # Train/dev/test files for the relation `P17`
│   │   ├── train.jsonl               # Training examples
│   │   ├── dev.jsonl                 # Development examples
│   │   └── test.jsonl                # Test examples (the same as LAMA-TREx test set)
│   └── ...
└── cmp_lms_data                      # Training data collected by ourselves which can be used for BERT, RoBERTa, and ALBERT (we only use this dataset in Table 6 in the paper)
    ├── P17                           # Train/dev/test files for the relation `P17`
    │   ├── train.jsonl               # Training examples
    │   ├── dev.jsonl                 # Development examples
    │   ├── test.jsonl                # Test examples (a subset of the LAMA-TREx test set, filtered using the common vocab of three models)
    └── ...

Run OptiPrompt

Train/evaluate OptiPrompt

You can use code/run_optiprompt.py to train or evaluate the prompts on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_optiprompt.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions \
    [--init_manual_template] [--num_vectors 5 | 10]

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • init_manual_template: whether initialize the dense vectors in OptiPrompt using the manual prompts.
  • num_vectors: how many dense vectors are added in OptiPrompt (this argument is valid only when init_manual_template is not set).
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_optiprompt.sh) to run OptiPrompt on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_opti.sh

The default setting of this script is to run OptiPromot initialized with manual prompts on the pre-trained bert-base-cased model (no random initialization is used). The results will be stored in the outputs directory.

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_optiprompt.sh if you want to run experiments on other settings.

Run Fine-tuning

We release the code that we used in our experiments (check Section 4 in the paper).

Fine-tuning language models on factual probing

You can use code/run_finetune.py to fine-tune a language model on a specific relation. A command template is as follow:

rel=P101
dir=outputs/${rel}
mkdir -p ${dir}

python code/run_finetune.py \
    --relation_profile relation_metainfo/LAMA_relations.jsonl \
    --relation ${rel} \
    --common_vocab_filename common_vocabs/common_vocab_cased.txt \
    --model_name bert-base-cased \
    --do_train \
    --train_data data/autoprompt_data/${rel}/train.jsonl \
    --dev_data data/autoprompt_data/${rel}/dev.jsonl \
    --do_eval \
    --test_data data/LAMA-TREx/${rel}.jsonl \
    --output_dir ${dir} \
    --random_init none \
    --output_predictions

Arguments:

  • relation_profile: the meta information for each relation, containing the manual templates.
  • relation: the relation type (e.g., P101) considered in this experiment.
  • common_vocab_filename: the vocabulary used to filter out facts; it should be the intersection of different models' for fair comparison.
  • model_name: the pre-trained model used in this experiment, e.g., bert-base-cased, albert-xxlarge-v1.
  • do_train: whether to train the prompts on a training and development set.
  • do_eval: whether to test the trained prompts on a testing set.
  • {train|dev|test}_data: the file path of training/development/testing dataset.
  • random_init: how do we random initialize the model before training, there are three settings:
    • none: use the pre-trained model, no random initialization is used;
    • embedding: the Rand E control setting, where we random initialize the embedding layer of the model;
    • all: the Rand M control setting, where we random initialize all the parameters of the model.
  • output_predictions: whether to output top-k predictions for each testing fact (k is specified by --k).

Run experiments on all relations

We provide an example script (scripts/run_finetune.sh) to run fine-tuning on all 41 relations on the LAMA benchmark. Run the following command to use it:

bash scripts/run_finetune.sh

Please modify the shell variables (i.e., OUTPUTS_DIR, MODEL, RAND) in scripts/run_finetune.sh if you want to run experiments on other settings.

Evaluate LAMA/LPAQA/AutoPrompt prompts

We provide a script to evaluate prompts released in previous works (based on code/run_finetune.py with only --do_eval). Please use the foolowing command:

bash scripts/run_eval_prompts {lama | lpaqa | autoprompt}

Questions?

If you have any questions related to the code or the paper, feel free to email Zexuan Zhong ([email protected]) or Dan Friedman ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

@inproceedings{zhong2021factual,
   title={Factual Probing Is [MASK]: Learning vs. Learning to Recall},
   author={Zhong, Zexuan and Friedman, Dan and Chen, Danqi},
   booktitle={North American Association for Computational Linguistics (NAACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022