A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

Overview

sne4onnx

A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want. Simple Network Extraction for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • If INPUT OP name and OUTPUT OP name are specified, the onnx graph within the range of the specified OP name is extracted and .onnx is generated.
  • Change backend to onnx.utils.Extractor.extract_model so that onnx.ModelProto can be specified as input.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U sne4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sne4onnx:latest

### docker build
$ docker build -t pinto0309/sne4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sne4onnx:latest
$ cd /workdir

2. CLI Usage

$ sne4onnx -h

usage:
    sne4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --input_op_names INPUT_OP_NAMES
    --output_op_names OUTPUT_OP_NAMES
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --input_op_names INPUT_OP_NAMES
        List of OP names to specify for the input layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. --input_op_names aaa,bbb,ccc

  --output_op_names OUTPUT_OP_NAMES
        List of OP names to specify for the output layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. --output_op_names ddd,eee,fff

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path. If not specified, extracted.onnx is output.

3. In-script Usage

$ python
>>> from sne4onnx import extraction
>>> help(extraction)

Help on function extraction in module sne4onnx.onnx_network_extraction:

extraction(
    input_op_names: List[str],
    output_op_names: List[str],
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = ''
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_op_names: List[str]
        List of OP names to specify for the input layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. ['aaa','bbb','ccc']

    output_op_names: List[str]
        List of OP names to specify for the output layer of the model.
        Specify the name of the OP, separated by commas.
        e.g. ['ddd','eee','fff']

    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If not specified, .onnx is not output.
        Default: ''

    Returns
    -------
    extracted_graph: onnx.ModelProto
        Extracted onnx ModelProto

4. CLI Execution

$ sne4onnx \
--input_onnx_file_path input.onnx \
--input_op_names aaa,bbb,ccc \
--output_op_names ddd,eee,fff \
--output_onnx_file_path output.onnx

5. In-script Execution

5-1. Use ONNX files

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa', 'bbb', 'ccc'],
  output_op_names=['ddd', 'eee', 'fff'],
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
)

5-2. Use onnx.ModelProto

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa', 'bbb', 'ccc'],
  output_op_names=['ddd', 'eee', 'fff'],
  onnx_graph=graph,
  output_onnx_file_path='output.onnx',
)

6. Samples

6-1. Pre-extraction

image image image

6-2. Extraction

$ sne4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280.onnx \
--input_op_names 0,1 \
--output_op_names 497,785 \
--output_onnx_file_path hitnet_sf_finalpass_720x960_head.onnx

6-3. Extracted

image image image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/snd4onnx
  5. https://github.com/PINTO0309/scs4onnx
  6. https://github.com/PINTO0309/snc4onnx
  7. https://github.com/PINTO0309/sog4onnx
  8. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Parasite: a tool allowing you to compress and decompress files, to reduce their size
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Comments
  • Significantly faster processing

    Significantly faster processing

    1. https://github.com/PINTO0309/simple-onnx-processing-tools/issues/2
    2. Eliminate comma-separated specifications for input_op_names and output_op_names
    3. Add non_verbose option
    opened by PINTO0309 0
Releases(1.0.10)
  • 1.0.10(Sep 7, 2022)

    • Add short form parameter
    $ sne4onnx -h
    
    usage:
        sne4onnx [-h]
        -if INPUT_ONNX_FILE_PATH
        -ion INPUT_OP_NAMES
        -oon OUTPUT_OP_NAMES
        [-of OUTPUT_ONNX_FILE_PATH]
        [-n]
    
    optional arguments:
      -h, --help
        show this help message and exit
    
      -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.
    
      -ion INPUT_OP_NAMES [INPUT_OP_NAMES ...], --input_op_names INPUT_OP_NAMES [INPUT_OP_NAMES ...]
        List of OP names to specify for the input layer of the model.
        e.g. --input_op_names aaa bbb ccc
    
      -oon OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
        List of OP names to specify for the output layer of the model.
        e.g. --output_op_names ddd eee fff
    
      -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path. If not specified, extracted.onnx is output.
    
      -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.9(Jun 7, 2022)

  • 1.0.8(May 25, 2022)

  • 1.0.7(May 8, 2022)

  • 1.0.6(May 8, 2022)

    1. Fix: https://github.com/PINTO0309/simple-onnx-processing-tools/issues/2
    2. Eliminate comma-separated specifications for input_op_names and output_op_names
    3. Add non_verbose option
    Source code(tar.gz)
    Source code(zip)
  • 1.0.5(Apr 11, 2022)

  • 1.0.4(Apr 11, 2022)

  • 1.0.3(Apr 11, 2022)

  • 1.0.2(Apr 10, 2022)

  • 1.0.1(Apr 7, 2022)

  • 1.0.0(Apr 7, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020