VideoGPT: Video Generation using VQ-VAE and Transformers

Related tags

Deep LearningVideoGPT
Overview

VideoGPT: Video Generation using VQ-VAE and Transformers

[Paper][Website][Colab][Gradio Demo]

We present VideoGPT: a conceptually simple architecture for scaling likelihood based generative modeling to natural videos. VideoGPT uses VQ-VAE that learns downsampled discrete latent representations of a raw video by employing 3D convolutions and axial self-attention. A simple GPT-like architecture is then used to autoregressively model the discrete latents using spatio-temporal position encodings. Despite the simplicity in formulation and ease of training, our architecture is able to generate samples competitive with state-of-the-art GAN models for video generation on the BAIR Robot dataset, and generate high fidelity natural images from UCF-101 and Tumbler GIF Dataset (TGIF). We hope our proposed architecture serves as a reproducible reference for a minimalistic implementation of transformer based video generation models.

Approach

VideoGPT

Installation

Change the cudatoolkit version compatible to your machine.

$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
$ pip install git+https://github.com/wilson1yan/VideoGPT.git

Sparse Attention (Optional)

For limited compute scenarios, it may be beneficial to use sparse attention.

$ sudo apt-get install llvm-9-dev
$ DS_BUILD_SPARSE_ATTN=1 pip install deepspeed

After installng deepspeed, you can train a sparse transformer by setting the flag --attn_type sparse in scripts/train_videogpt.py. The default support sparsity configuration is an N-d strided sparsity layout, however, you can write your own arbitrary layouts to use.

Dataset

The default code accepts data as an HDF5 file with the specified format in videogpt/data.py, and a directory format with the follow structure:

video_dataset/
    train/
        class_0/
            video1.mp4
            video2.mp4
            ...
        class_1/
            video1.mp4
            ...
        ...
        class_n/
            ...
    test/
        class_0/
            video1.mp4
            video2.mp4
            ...
        class_1/
            video1.mp4
            ...
        ...
        class_n/
            ...

An example of such a dataset can be constructed from UCF-101 data by running the script

sh scripts/preprocess/create_ucf_dataset.sh datasets/ucf101

You may need to install unrar and unzip for the code to work correctly.

If you do not care about classes, the class folders are not necessary and the dataset file structure can be collapsed into train and test directories of just videos.

Using Pretrained VQ-VAEs

There are four available pre-trained VQ-VAE models. All strides listed with each model are downsampling amounts across THW for the encoders.

  • bair_stride4x2x2: trained on 16 frame 64 x 64 videos from the BAIR Robot Pushing dataset
  • ucf101_stride4x4x4: trained on 16 frame 128 x 128 videos from UCF-101
  • kinetics_stride4x4x4: trained on 16 frame 128 x 128 videos from Kinetics-600
  • kinetics_stride2x4x4: trained on 16 frame 128 x 128 videos from Kinetics-600, with 2x larger temporal latent codes (achieves slightly better reconstruction)
from torchvision.io import read_video
from videogpt import load_vqvae
from videogpt.data import preprocess

video_filename = 'path/to/video_file.mp4'
sequence_length = 16
resolution = 128
device = torch.device('cuda')

vqvae = load_vqvae('kinetics_stride2x4x4')
video = read_video(video_filename, pts_unit='sec')[0]
video = preprocess(video, resolution, sequence_length).unsqueeze(0).to(device)

encodings = vqvae.encode(video)
video_recon = vqvae.decode(encodings)

Training VQ-VAE

Use the scripts/train_vqvae.py script to train a VQ-VAE. Execute python scripts/train_vqvae.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

VQ-VAE Specific Settings

  • --embedding_dim: number of dimensions for codebooks embeddings
  • --n_codes 2048: number of codes in the codebook
  • --n_hiddens 240: number of hidden features in the residual blocks
  • --n_res_layers 4: number of residual blocks
  • --downsample 4 4 4: T H W downsampling stride of the encoder

Training Settings

  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader

Dataset Settings

  • --data_path : path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Training VideoGPT

You can download a pretrained VQ-VAE, or train your own. Afterwards, use the scripts/train_videogpt.py script to train an VideoGPT model for sampling. Execute python scripts/train_videogpt.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

VideoGPT Specific Settings

  • --vqvae kinetics_stride4x4x4: path to a vqvae checkpoint file, OR a pretrained model name to download. Available pretrained models are: bair_stride4x2x2, ucf101_stride4x4x4, kinetics_stride4x4x4, kinetics_stride2x4x4. BAIR was trained on 64 x 64 videos, and the rest on 128 x 128 videos
  • --n_cond_frames 0: number of frames to condition on. 0 represents a non-frame conditioned model
  • --class_cond: trains a class conditional model if activated
  • --hidden_dim 576: number of transformer hidden features
  • --heads 4: number of heads for multihead attention
  • --layers 8: number of transformer layers
  • --dropout 0.2': dropout probability applied to features after attention and positionwise feedforward layers
  • --attn_type full: full or sparse attention. Refer to the Installation section for install sparse attention
  • --attn_dropout 0.3: dropout probability applied to the attention weight matrix

Training Settings

  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader

Dataset Settings

  • --data_path : path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Sampling VideoGPT

After training, the VideoGPT model can be sampled using the scripts/sample_videogpt.py. You may need to install ffmpeg: sudo apt-get install ffmpeg

Reproducing Paper Results

Note that this repo is primarily designed for simplicity and extending off of our method. Reproducing the full paper results can be done using code found at a separate repo. However, be aware that the code is not as clean.

Citation

Please consider using the follow citation when using our code:

@misc{yan2021videogpt,
      title={VideoGPT: Video Generation using VQ-VAE and Transformers}, 
      author={Wilson Yan and Yunzhi Zhang and Pieter Abbeel and Aravind Srinivas},
      year={2021},
      eprint={2104.10157},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wilson Yan
1st year PhD interested in unsupervised learning and reinforcement learning
Wilson Yan
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022