This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Overview

Mega-NeRF

This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewer.

The codebase for the Mega-NeRF-Dynamic viewer can be found here.

Note: This is a preliminary release and there may still be outstanding bugs.

Citation

@misc{turki2021meganerf,
      title={Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs}, 
      author={Haithem Turki and Deva Ramanan and Mahadev Satyanarayanan},
      year={2021},
      eprint={2112.10703},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Demo

Setup

conda env create -f environment.yml
conda activate mega-nerf

The codebase has been mainly tested against CUDA >= 11.1 and V100/2080 Ti/3090 Ti GPUs. 1080 Ti GPUs should work as well although training will be much slower.

Data

Mill 19

  • The Building scene can be downloaded here.
  • The Rubble scene can be downloaded here.

UrbanScene 3D

  1. Download the raw photo collections from the UrbanScene3D dataset
  2. Download the refined camera poses for one of the scenes below:
  1. Run python scripts/copy_images.py --image_path $RAW_PHOTO_PATH --dataset_path $CAMERA_POSE_PATH

Quad 6k Dataset

  1. Download the raw photo collections from here.
  2. Download the refined camera poses
  3. Run python scripts/copy_images.py --image_path $RAW_PHOTO_PATH --dataset_path $CAMERA_POSE_PATH

Custom Data

The expected directory structure is:

  • /coordinates.pt: Torch file that should contain the following keys:
    • 'origin_drb': Origin of scene in real-world units
    • 'pose_scale_factor': Scale factor mapping from real-world unit (ie: meters) to [-1, 1] range
  • '/{val|train}/rgbs/': JPEG or PNG images
  • '/{val|train}/metadata/': Image-specific image metadata saved as a torch file. Each image should have a corresponding metadata file with the following file format: {rgb_stem}.pt. Each metadata file should contain the following keys:
    • 'W': Image width
    • 'H': Image height
    • 'intrinsics': Image intrinsics in the following form: [fx, fy, cx, cy]
    • 'c2w': Camera pose. 3x3 camera matrix with the convention used in the original NeRF repo, ie: x: down, y: right, z: backwards, followed by the following transformation: torch.cat([camera_in_drb[:, 1:2], -camera_in_drb[:, :1], camera_in_drb[:, 2:4]], -1)

Training

  1. Generate the training partitions for each submodule: python scripts/create_cluster_masks.py --config configs/mega-nerf/${DATASET_NAME}.yml --dataset_path $DATASET_PATH --output $MASK_PATH --grid_dim $GRID_X $GRID_Y
    • Note: this can be run across multiple GPUs by instead running python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS --max_restarts 0 scripts/create_cluster_masks.py
  2. Train each submodule: python mega_nerf/train.py --config_file configs/mega-nerf/${DATASET_NAME}.yml --exp_name $EXP_PATH --dataset_path $DATASET_PATH --chunk_paths $SCRATCH_PATH --cluster_mask_path ${MASK_PATH}/${SUBMODULE_INDEX}
    • Note: training with against full scale data will write hundreds of GBs / several TBs of shuffled data to disk. You can downsample the training data using train_scale_factor option.
    • Note: we provide a utility script based on parscript to start multiple training jobs in parallel. It can run through the following command: CONFIG_FILE=configs/mega-nerf/${DATASET_NAME}.yaml EXP_PREFIX=$EXP_PATH DATASET_PATH=$DATASET_PATH CHUNK_PREFIX=$SCRATCH_PATH MASK_PATH=$MASK_PATH python -m parscript.dispatcher parscripts/run_8.txt -g $NUM_GPUS
  3. Merge the trained submodules into a unified Mega-NeRF model: python scripts/merge_submodules.py --config_file configs/mega-nerf/${DATASET_NAME}.yaml --ckpt_prefix ${EXP_PREFIX}- --centroid_path ${MASK_PATH}/params.pt --output $MERGED_OUTPUT

Evaluation

Single-GPU evaluation: python mega_nerf/eval.py --config_file configs/nerf/${DATASET_NAME}.yaml --exp_name $EXP_NAME --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT

Multi-GPU evaluation: python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS mega_nerf/eval.py --config_file configs/nerf/${DATASET_NAME}.yaml --exp_name $EXP_NAME --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT

Octree Extraction (for use by Mega-NeRF-Dynamic viewer)

python scripts/create_octree.py --config configs/mega-nerf/${DATASET_NAME}.yaml --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT --output $OCTREE_PATH

Acknowledgements

Large parts of this codebase are based on existing work in the nerf_pl, NeRF++, and Plenoctree repositories. We use svox to serialize our sparse voxel octrees and the generated structures should be largely compatible with that codebase.

Owner
cmusatyalab
cmusatyalab
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022