A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

Overview

LP-Option-Hedging

Description

A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging impermanent loss, which may allow arbitrage. Initially written in May for personal use. Optimized by 30x with Numba. May or may not add English annotations.

Utility

The code may plot PnL graphs for leveraged LP (liquidity provider) positions on constant product Automated Market Maker (AMM), like those on Alpha Homora and Alpaca Finance. It can perform a variational search for the optimal combination of call options and put options which minimizes impermanent loss in leveraged LP. It then plots the PnL graphs for leveraged LP, the option combination with sizes and strike prices, and the combination of leveraged LP and options.

The type of leveraged LP can be borrowing USD stablecoins, borrowing cryptos like BTC, ETH, and a delta neutral combination of the two.

Parameters that need to be manually specified:

  • type of leveraged LP
  • leverage of LP
  • max LTV at liquidation
  • APRs on farming
  • annualized volatility, risk-free interest rate, and days to expiration of European options priced by the Black-Scholes model

Background

Providing liquidity on AMM is equivalent to short gamma and long theta, i.e. the LP subjects itself to impermanent loss in exchange for trading fees and liquidity mining rewards. On the other hand, long call and long put have positive gamma and negative theta. By virtue of the Carr–Madan formula, a smooth function of the underlying price, in this case the payoff of leveraged LP, can be replicated by a series of European options at continuous strikes. Hence it is possible to completely hedge leveraged LP with options. In pratice options are not available at any strike. Moreover the volatility is not constant at all strikes due to the volatility smile. Therefore the current program only considers a long call and a long put for hedging.

Disclaimer

The hedging is only approximate and theoretical. The author is not responsible for any loss caused by the use of this program. DYOR.

Reference

期权对冲LP

简介

一个分析杠杆挖矿并寻找最佳期权组合以对冲无常损失的Python程序,写于五月初,经Numba优化。

功能

画出基于恒定乘积AMM的杠杆挖矿的损益曲线,并寻找对冲无常损失的最佳期权组合,画出杠杆LP、期权组合包括张数和行权价及总仓位的损益曲线。

杠杆挖矿的类型包括借U、借币及中性敞口的组合。

需手动输入的参数:

  • 杠杆挖矿类型
  • 杠杆倍数
  • 清算时债务比例
  • 挖矿APR
  • 期权的年化波动率、无风险利率、到期日

声明

程序模拟仅为理论近似,本人不对由此造成的任何损失负责。

Owner
Aureliano
Aureliano
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022