Official implementation of Densely connected normalizing flows

Overview

Densely connected normalizing flows

This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster available here.

PWC PWC

Setup

  • CUDA 11.1
  • Python 3.8
pip install -r requirements.txt
pip install -e .

Training

cd ./experiments/image

CIFAR-10:

python train.py --epochs 400 --batch_size 64 --optimizer adamax --lr 1e-3  --gamma 0.9975 --warmup 5000  --eval_every 1 --check_every 10 --dataset cifar10 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/cifar10_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 420

ImageNet32:

python train.py --epochs 20 --batch_size 64 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset imagenet32 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/imagenet32_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 22

ImageNet64:

python train.py --epochs 10 --batch_size 32 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset imagenet64 --augmentation eta --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/imagenet64_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 11

CelebA:

python train.py --epochs 50 --batch_size 32 --optimizer adamax --lr 1e-3  --gamma 0.95 --warmup 5000  --eval_every 1 --check_every 10 --dataset celeba --augmentation horizontal_flip --block_conf 6 4 1 --layers_conf  5 6 20  --layer_mid_chnls 48 48 48 --growth_rate 10  --name DF_74_10
python train_more.py --model ./log/celeba_8bit/densenet-flow/expdecay/DF_74_10 --new_lr 2e-5 --new_epochs 55

Note: Download instructions for ImageNet and CelebA are defined in denseflow/data/datasets/image/{dataset}.py

Evaluation

CIFAR-10:

python eval_loglik.py --model PATH_TO_MODEL --k 1000 --kbs 50

ImageNet32:

python eval_loglik.py --model PATH_TO_MODEL --k 200 --kbs 50

ImageNet64 and CelebA:

python eval_loglik.py --model PATH_TO_MODEL --k 200 --kbs 25

Model weights

Model weights are stored here.

Samples generation

Generated samples are stored in PATH_TO_MODEL/samples

python eval_sample.py --model PATH_TO_MODEL

Note: PATH_TO_MODEL has to contain check directory.

ImageNet 32x32

Alt text

ImageNet 64x64

Alt text

CelebA

Alt text

Acknowledgements

Significant part of this code benefited from SurVAE [1] code implementation, available under MIT license.

References

[1] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. Survae flows: Surjections to bridge the gap between vaes and flows. InAdvances in Neural Information Processing Systems 33. Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020.

Owner
Matej Grcić
PhD Student | Research associate focused on Computer Vision @ University of Zagreb, Faculty of Electrical Engineering and Computing
Matej Grcić
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022