Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

Related tags

Deep LearningVMNet
Overview

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation

Framework Fig

Created by Zeyu HU

Introduction

This work is based on our paper VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation, which appears at the IEEE International Conference on Computer Vision (ICCV) 2021.

In recent years, sparse voxel-based methods have become the state-of-the-arts for 3D semantic segmentation of indoor scenes, thanks to the powerful 3D CNNs. Nevertheless, being oblivious to the underlying geometry, voxel-based methods suffer from ambiguous features on spatially close objects and struggle with handling complex and irregular geometries due to the lack of geodesic information. In view of this, we present Voxel-Mesh Network (VMNet), a novel 3D deep architecture that operates on the voxel and mesh representations leveraging both the Euclidean and geodesic information. Intuitively, the Euclidean information extracted from voxels can offer contextual cues representing interactions between nearby objects, while the geodesic information extracted from meshes can help separate objects that are spatially close but have disconnected surfaces. To incorporate such information from the two domains, we design an intra-domain attentive module for effective feature aggregation and an inter-domain attentive module for adaptive feature fusion. Experimental results validate the effectiveness of VMNet: specifically, on the challenging ScanNet dataset for large-scale segmentation of indoor scenes, it outperforms the state-of-the-art SparseConvNet and MinkowskiNet (74.6% vs 72.5% and 73.6% in mIoU) with a simpler network structure (17M vs 30M and 38M parameters).

Citation

If you find our work useful in your research, please consider citing:

@misc{hu2021vmnet,
      title={VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation}, 
      author={Zeyu Hu and Xuyang Bai and Jiaxiang Shang and Runze Zhang and Jiayu Dong and Xin Wang and Guangyuan Sun and Hongbo Fu and Chiew-Lan Tai},
      year={2021},
      eprint={2107.13824},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation

  • Our code is based on Pytorch. Please make sure CUDA and cuDNN are installed. One configuration has been tested:

    • Python 3.7
    • Pytorch 1.4.0
    • torchvision 0.5.0
    • CUDA 10.0
    • cudatoolkit 10.0.130
    • cuDNN 7.6.5
  • VMNet depends on the torch-geometric and torchsparse libraries. Please follow their installation instructions. One configuration has been tested, higher versions should work as well:

    • torch-geometric 1.6.3
    • torchsparse 1.1.0
  • We adapted VCGlib to generate pooling trace maps for vertex clustering and quadric error metrics.

    git clone https://github.com/cnr-isti-vclab/vcglib
    
    # QUADRIC ERROR METRICS
    cd vcglib/apps/tridecimator/
    qmake
    make
    
    # VERTEX CLUSTERING
    cd ../sample/trimesh_clustering
    qmake
    make
    

    Please add vcglib/apps/tridecimator and vcglib/apps/sample/trimesh_clustering to your environment path variable.

  • Other dependencies. One configuration has been tested:

    • open3d 0.9.0
    • plyfile 0.7.3
    • scikit-learn 0.24.0
    • scipy 1.6.0

Data Preparation

  • Please refer to https://github.com/ScanNet/ScanNet and https://github.com/niessner/Matterport to get access to the ScanNet and Matterport dataset. Our method relies on the .ply as well as the .labels.ply files. We take ScanNet dataset as example for the following instructions.

  • Create directories to store processed data.

    • 'path/to/processed_data/train/'
    • 'path/to/processed_data/val/'
    • 'path/to/processed_data/test/'
  • Prepare train data.

    python prepare_data.py --considered_rooms_path dataset/data_split/scannetv2_train.txt --in_path path/to/ScanNet/scans --out_path path/to/processed_data/train/
    
  • Prepare val data.

    python prepare_data.py --considered_rooms_path dataset/data_split/scannetv2_val.txt --in_path path/to/ScanNet/scans --out_path path/to/processed_data/val/
    
  • Prepare test data.

    python prepare_data.py --test_split --considered_rooms_path dataset/data_split/scannetv2_test.txt --in_path path/to/ScanNet/scans_test --out_path path/to/processed_data/test/
    

Train

  • On train/val/test setting.

    CUDA_VISIBLE_DEVICES=0 python run.py --train --exp_name name_you_want --data_path path/to/processed_data
    
  • On train+val/test setting (for ScanNet benchmark).

    CUDA_VISIBLE_DEVICES=0 python run.py --train_benchmark --exp_name name_you_want --data_path path/to/processed_data
    

Inference

  • Validation. Pretrained model (73.3% mIoU on ScanNet Val). Please download and put into directory check_points/val_split.

    CUDA_VISIBLE_DEVICES=0 python run.py --val --exp_name val_split --data_path path/to/processed_data
    
  • Test. Pretrained model (74.6% mIoU on ScanNet Test). Please download and put into directory check_points/test_split. TxT files for benchmark submission will be saved in directory test_results/.

    CUDA_VISIBLE_DEVICES=0 python run.py --test --exp_name test_split --data_path path/to/processed_data
    

Acknowledgements

Our code is built upon torch-geometric, torchsparse and dcm-net.

License

Our code is released under MIT License (see LICENSE file for details).

Owner
HU Zeyu
HU Zeyu
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Rohit Ingole 2 Mar 24, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022