Fake videos detection by tracing the source using video hashing retrieval.

Overview

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️

📜 Directory

Introduction

VTL

Video Tracing and Tampering Localization (VTL). A novel framework to detect fake video (clipping, cropping, blur, etc.) by tracing the source video of fake video. 1) Training hash centers as HCs. 2) Finding index of source video from HCs. 3) Masking the different between fake video and source video as a result of comparison (auxiliary information).

Trace Samples and Acc of HashBits

Although the source videos are very similar, we can accurately find the source videos of the fake video clips.

DFTL Dataset Samples

Same person with different scenes. You can download full 16 minutes videos of source video and fake video by follows link.

Different fake videos from same source.

Source Video

Fake Videos of Different Face Swap Methods

DAVIS2016-TL Dataset Samples

The first gif of boat is source video, and remaining five videos generated by different inpainting methods.

🔬 Train or Test

Datasets Download

BaiduNetdisk code:VTLs

  • actors: Source videos and fake videos of full 16 minutes. You can use these videos to make richer datasets.
  • DFTL: Dataset of DFTL, the DFTL build from actors.
  • DAVIS2016-TL: Extension of DAVIS2016

Extract to the same directory as the code (vtl). Example:

├─other files
├─project
│  ├─vrf: dataset of DFTL
│  ├─inpainting: dataset of DAVIS2016-TL
│  └─vtl: our code
│      ├─CSQ: Central Similarity Quantization for Efficient Image and Video Retrieval
│      ├─dmac: Compared method of Localization
│      └─codes

Train

Pretrained models and hash centers

pip install -r requirements.txt

Model DFTL DAVIS2016-TL
ViTHash 64-1024bits 64-1024bits
Generator link link

Parameters

  • local_rank: gpu id
  • path: dataset path
  • type: choice dataloader
    • 0: DFTL dataloader, dir name is vrf
    • 1: DAVIS2016-TL dataloader, dir name is inpainting

Train ViTHash

python train_h.py --local_rank=0 --path=../vrf --type=0 --bits=128

Train Generator

python train_g.py --local_rank=0 --path=../vrf --type=0

Test

Test IOU

The test script will test Generator of VTL and DMAC together on DFTL and DAVIS2016-TL. You can modify it for yourself.

python test_iou.py

Test ViTHash

  1. type: choice dataloader
    • 0: DFTL dataloader, dir name is vrf
    • 1: DAVIS2016-TL dataloader, dir name is inpainting
  2. path: dataset path
  3. hashbits: 128 256 512 or 1024, will load different pre-trained model and hash JSON file.
python test.py 1 ../inpainting 512

Test CSQ

  1. cd ./CSQ
  2. run test script
python hash_test_vrf.py --dataset=Inpainting --pretrained_3d=./Inpainting_64bits.pth

🚀️ Tracing

Trace Samples

👀️ Localization

Localization Samples

DAVIS2016-TL

DFTL

You might also like...
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

Space-event-trace - Tracing service for spaceteam events
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

A Joint Video and Image Encoder for End-to-End Retrieval
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

Comments
  • the pre-trained model

    the pre-trained model

    I downloaded the provided pre-trained model and the test acc in DFTL and DAVIS2016-TL reached 100%, is this correct? Why is it so much higher than in the article?

    opened by ymhzyj 1
Releases(v1.0)
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023