Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Overview

Tensor Component Analysis for Interpreting the Latent Space of GANs

[ paper | project page ]

Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

./images/teaser.png

dependencies

Firstly, to install the required packages, please run:

$ pip install -r requirements.txt

Pretrained weights

To replicate the results in the paper, you'll need to first download the pre-trained weights. To do so, simply run this from the command line:

./download_weights.sh

Quantitative results

building the prediction matrices

To reproduce Fig. 5, one can then run the ./quant.ipynb notebook using the pre-computed classification scores (please see this notebook for more details).

manually computing predictions

To call the Microsoft Azure Face API to generate the predictions again from scratch, one can run the shell script in ./quant/classify.sh. Firstly however, you need to generate our synthetic images to classify, which we detail below.

Qualitative results

generating the images

Reproducing the qualitative results (i.e. in Fig. 6) involves generating synthetic faces and 3 edited versions with the 3 attributes of interest (hair colour, yaw, and pitch). To generate these images (which are also used for the quantitative results), simply run:

$ ./generate_quant_edits.sh

mode-wise edits

./images/116-blonde.gif ./images/116-yaw.gif ./images/116-pitch.gif

Manual edits along individual modes of the tensor are made by calling main.py with the --mode edit_modewise flag. For example, one can reproduce the images from Fig. 3 with:

$ python main.py --cp_rank 0 --tucker_ranks "4,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 1000
  --n_to_edit 10 \
  --mode edit_modewise \
  --attribute_to_edit male

multilinear edits

./images/thick.gif

Edits achieved with the 'multilinear mixing' are achieved instead by loading the relevant weights and supplying the --mode edit_multilinear flag. For example, the images in Fig. 4 are generated with:

$ python main.py --cp_rank 0 --tucker_ranks "256,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 200000
  --n_to_edit 10 \
  --mode edit_multilinear \
  --attribute_to_edit thick

Please feel free to get in touch at: [email protected], where x=oldfield


credits

All the code in ./architectures/ and utils.py is directly imported from https://github.com/genforce/genforce, only lightly modified to support performing the forward pass through the models partially, and returning the intermediate tensors.

The structure of the codebase follows https://github.com/yunjey/stargan, and hence we use their code as a template to build off. For this reason, you will find small helper functions (e.g. the first few lines of main.py) are borrowed from the StarGAN codebase.

Owner
James Oldfield
James Oldfield
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021