EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

Related tags

Deep Learningeasy
Overview

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

This repository is the official implementation of EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY proposes a simple methodology, that reaches or even beats state of the art performance on multiple standardized benchmarks of the field, while adding almost no hyperparameters or parameters to those used for training the initial deep learning models on the generic dataset.

Downloads

Please click the Google Drive link for downloading the features, backbones and datasets.

Each of the files (backbones and features) have the following prefixes depending on the backbone:

Backbone prefix Number of parameters
ResNet12 12M
ResNet12(1/sqrt(2)) small 6M
ResNet12(1/2) tiny 3M

Each of the features file is named as follow :

  • if not AS : " features .pt11"
  • if AS : " featuresAS .pt11"

Testing scripts for EASY

Run scripts to evaluate the features on FSL tasks for Y and ASY. For EY and EASY use the corresponding features.

Inductive setup using NCM

Test features on miniimagenet using Y (Resnet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeatures1.pt11' --preprocessing ME">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeatures1.pt11' --preprocessing ME

      
     

Test features on miniimagenet using ASY (Resnet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeaturesAS1.pt11' --preprocessing ME">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeaturesAS1.pt11' --preprocessing ME

      
     

Test features on miniimagenet using EY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeatures1.pt11, /minifeatures2.pt11, /minifeatures3.pt11]" --preprocessing ME">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeatures1.pt11, 
         
          /minifeatures2.pt11, 
          
           /minifeatures3.pt11]" --preprocessing ME

          
         
        
       

Test features on miniimagenet using EASY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeaturesAS1.pt11, /minifeaturesAS2.pt11, /minifeaturesAS3.pt11]" --preprocessing ME ">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeaturesAS1.pt11, 
         
          /minifeaturesAS2.pt11, 
          
           /minifeaturesAS3.pt11]" --preprocessing ME 

          
         
        
       

Transductive setup using Soft k-means

Test features on miniimagenet using Y (ResNet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

      
     

Test features on miniimagenet using ASY (ResNet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeaturesAS1.pt11' --postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeaturesAS1.pt11' --postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

      
     

Test features on miniimagenet using EY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeatures1.pt11, /minifeatures2.pt11, /minifeatures3.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeatures1.pt11, 
         
          /minifeatures2.pt11, 
          
           /minifeatures3.pt11]" --postrocessing ME  --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

          
         
        
       

Test features on miniimagenet using EASY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeaturesAS1.pt11, /minifeaturesAS2.pt11, /minifeaturesAS3.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeaturesAS1.pt11, 
         
          /minifeaturesAS2.pt11, 
          
           /minifeaturesAS3.pt11]" --postrocessing ME  --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

          
         
        
       

Training scripts for Y

Train a model on miniimagenet using manifold mixup, self-supervision and cosine scheduler

" --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME ">
$ python main.py --dataset-path "
    
     " --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME 

    

Important Arguments

Some important arguments for our code.

Training arguments

  • dataset: choices=['miniimagenet', 'cubfs','tieredimagenet', 'fc100', 'cifarfs']
  • model: choices=['resnet12', 'resnet18', 'resnet20', 'wideresnet', 's2m2r']
  • dataset-path: path of the datasets folder which contains folders of all the datasets.

Few-shot Classification

  • preprocessing: preprocessing sequence for few shot given as a string, can contain R:relu P:sqrt E:sphering and M:centering using the base data.
  • postprocessing: postprocessing sequence for few shot given as a string, can contain R:relu P:sqrt E:sphering and M:centering on the few-shot data, used for transductive setting.

Few-shot classification Results

Experimental results on few-shot learning datasets with ResNet-12 backbone. We report our average results with 10000 randomly sampled episodes for both 1-shot and 5-shot evaluations.

MiniImageNet Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SimpleShot [29] 62.85 ± 0.20 80.02 ± 0.14
Baseline++ [30] 53.97 ± 0.79 75.90 ± 0.61
TADAM [35] 58.50 ± 0.30 76.70 ± 0.30
ProtoNet [10] 60.37 ± 0.83 78.02 ± 0.57
R2-D2 (+ens) [20] 64.79 ± 0.45 81.08 ± 0.32
FEAT [36] 66.78 82.05
CNL [37] 67.96 ± 0.98 83.36 ± 0.51
MERL [38] 67.40 ± 0.43 83.40 ± 0.28
Deep EMD v2 [13] 68.77 ± 0.29 84.13 ± 0.53
PAL [8] 69.37 ± 0.64 84.40 ± 0.44
inv-equ [39] 67.28 ± 0.80 84.78 ± 0.50
CSEI [40] 68.94 ± 0.28 85.07 ± 0.50
COSOC [9] 69.28 ± 0.49 85.16 ± 0.42
EASY 2×ResNet12 1/√2 (ours) 70.63 ± 0.20 86.28 ± 0.12
above <=12M nb of parameters below 36M
3S2M2R [12] 64.93 ± 0.18 83.18 ± 0.11
LR + DC [17] 68.55 ± 0.55 82.88 ± 0.42
EASY 3×ResNet12 (ours) 71.75 ± 0.19 87.15 ± 0.12

TieredImageNet Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SimpleShot [29] 69.09 ± 0.22 84.58 ± 0.16
ProtoNet [10] 65.65 ± 0.92 83.40 ± 0.65
FEAT [36] 70.80 ± 0.23 84.79 ± 0.16
PAL [8] 72.25 ± 0.72 86.95 ± 0.47
DeepEMD v2 [13] 74.29 ± 0.32 86.98 ± 0.60
MERL [38] 72.14 ± 0.51 87.01 ± 0.35
COSOC [9] 73.57 ± 0.43 87.57 ± 0.10
CNL [37] 73.42 ± 0.95 87.72 ± 0.75
invariance-equivariance [39] 72.21 ± 0.90 87.08 ± 0.58
CSEI [40] 73.76 ± 0.32 87.83 ± 0.59
ASY ResNet12 (ours) 74.31 ± 0.22 87.86 ± 0.15
above <=12M nb of parameters below 36M
S2M2R [12] 73.71 ± 0.22 88.52 ± 0.14
EASY 3×ResNet12 (ours) 74.71 ± 0.22 88.33 ± 0.14

CUBFS Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
FEAT [36] 68.87 ± 0.22 82.90 ± 0.10
LaplacianShot [41] 80.96 88.68
ProtoNet [10] 66.09 ± 0.92 82.50 ± 0.58
DeepEMD v2 [13] 79.27 ± 0.29 89.80 ± 0.51
EASY 4×ResNet12 1/sqrt(2) 77.97 ± 0.20 91.59 ± 0.10
above <=12M nb of parameters below 36M
S2M2R [12] 80.68 ± 0.81 90.85 ± 0.44
EASY 3×ResNet12 (ours) 78.56 ± 0.19 91.93 ± 0.10

CIFAR-FS Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
S2M2R [12] 63.66 ± 0.17 76.07 ± 0.19
R2-D2 (+ens) [20] 76.51 ± 0.47 87.63 ± 0.34
invariance-equivariance [39] 77.87 ± 0.85 89.74 ± 0.57
EASY 2×ResNet12 1/sqrt(2) (ours) 75.24 ± 0.20 88.38 ± 0.14
above <=12M nb of parameters below 36M
S2M2R [12] 74.81 ± 0.19 87.47 ± 0.13
EASY 3×ResNet12 (ours) 76.20 ± 0.20 89.00 ± 0.14

FC-100 Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
DeepEMD v2 [13] 46.60 ± 0.26 63.22 ± 0.71
TADAM [35] 40.10 ± 0.40 56.10 ± 0.40
ProtoNet [10] 41.54 ± 0.76 57.08 ± 0.76
invariance-equivariance [39] 47.76 ± 0.77 65.30 ± 0.76
R2-D2 (+ens) [20] 44.75 ± 0.43 59.94 ± 0.41
EASY 2×ResNet12 1/sqrt(2) (ours) 47.94 ± 0.19 64.14 ± 0.19
above <=12M nb of parameters below 36M
EASY 3×ResNet12 (ours) 48.07 ± 0.19 64.74 ± 0.19

Minimagenet (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
TIM-GD [42] 73.90 85.00
ODC [43] 77.20 ± 0.36 87.11 ± 0.42
PEMnE-BMS∗ [32] 80.56 ± 0.27 87.98 ± 0.14
SSR [44] 68.10 ± 0.60 76.90 ± 0.40
iLPC [45] 69.79 ± 0.99 79.82 ± 0.55
EPNet [31] 66.50 ± 0.89 81.60 ± 0.60
DPGN [46] 67.77 ± 0.32 84.60 ± 0.43
ECKPN [47] 70.48 ± 0.38 85.42 ± 0.46
Rot+KD+POODLE [48] 77.56 85.81
EASY 2×ResNet12( 1√2) (ours) 81.70 ±0.25 88.29 ±0.13
above <=12M nb of parameters below 36M
SSR [44] 72.40 ± 0.60 80.20 ± 0.40
fine-tuning(train+val) [49] 68.11 ± 0.69 80.36 ± 0.50
SIB+E3BM [50] 71.40 81.20
LR+DC [17] 68.57 ± 0.55 82.88 ± 0.42
EPNet [31] 70.74 ± 0.85 84.34 ± 0.53
TIM-GD [42] 77.80 87.40
PT+MAP [51] 82.92 ± 0.26 88.82 ± 0.13
iLPC [45] 83.05 ± 0.79 88.82 ± 0.42
ODC [43] 80.64 ± 0.34 89.39 ± 0.39
PEMnE-BMS∗ [32] 83.35 ± 0.25 89.53 ± 0.13
EASY 3×ResNet12 (ours) 82.75 ±0.25 88.93 ±0.12

CUB-FS (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
TIM-GD [42] 82.20 90.80
ODC [43] 85.87 94.97
DPGN [46] 75.71 ± 0.47 91.48 ± 0.33
ECKPN [47] 77.43 ± 0.54 92.21 ± 0.41
iLPC [45] 89.00 ± 0.70 92.74 ± 0.35
Rot+KD+POODLE [48] 89.93 93.78
EASY 4×ResNet12( 1/2) (ours) 90.41 ± 0.19 93.58 ± 0.10
above <=12M nb of parameters below 36M
LR+DC [17] 79.56 ± 0.87 90.67 ± 0.35
PT+MAP [51] 91.55 ± 0.19 93.99 ± 0.10
iLPC [45] 91.03 ± 0.63 94.11 ± 0.30
EASY 3×ResNet12 (ours) 90.76 ± 0.19 93.90 ± 0.09

CIFAR-FS (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SSR [44] 76.80 ± 0.60 83.70 ± 0.40
iLPC [45] 77.14 ± 0.95 85.23 ± 0.55
DPGN [46] 77.90 ± 0.50 90.02 ± 0.40
ECKPN [47] 79.20 ± 0.40 91.00 ± 0.50
EASY 2×ResNet12 (1/sqrt(2)) (ours) 86.40 ± 0.23 89.75 ± 0.15
above <=12M nb of parameters below 36M
SSR [44] 81.60 ± 0.60 86.00 ± 0.40
fine-tuning (train+val) [49] 78.36 ± 0.70 87.54 ± 0.49
iLPC [45] 86.51 ± 0.75 90.60 ± 0.48
PT+MAP [51] 87.69 ± 0.23 90.68 ± 0.15
EASY 3×ResNet12 (ours) 86.96 ± 0.22 90.30 ± 0.15

FC-100 (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
EASY 2×ResNet12( 1√2)(ours) 54.68 ± 0.25 66.19 ± 0.20
above <=12M nb of parameters below 36M
SIB+E3BM [50] 46.00 57.10
fine-tuning (train) [49] 43.16 ± 0.59 57.57 ± 0.55
ODC [43] 47.18 ± 0.30 59.21 ± 0.56
fine-tuning (train+val) [49] 50.44 ± 0.68 65.74 ± 0.60
EASY 3×ResNet12 (ours) 55.11 ± 0.25 67.09 ± 0.20

Tiered Imagenet (transducive)

Methods 1-Shot 5-Way 5-Shot 5-Way
PT+MAP [51] 85.67 ± 0.26 90.45 ± 0.14
TIM-GD [42] 79.90 88.50
ODC [43] 83.73 ± 0.36 90.46 ± 0.46
SSR [44] 81.20 ± 0.60 85.70 ± 0.40
Rot+KD+POODLE [48] 79.67 86.96
DPGN [46] 72.45 ± 0.51 87.24 ± 0.39
EPNet [31] 76.53 ± 0.87 87.32 ± 0.64
ECKPN [47] 73.59 ± 0.45 88.13 ± 0.28
iLPC [45] 83.49 ± 0.88 89.48 ± 0.47
ASY ResNet12 (ours) 82.66 ± 0.27 88.60 ± 0.14
above <=12M nb of parameters below 36M
SIB+E3BM [50] 75.60 84.30
SSR [44] 79.50 ± 0.60 84.80 ± 0.40
fine-tuning (train+val) [49] 72.87 ± 0.71 86.15 ± 0.50
TIM-GD [42] 82.10 89.80
LR+DC [17] 78.19 ± 0.25 89.90 ± 0.41
EPNet [31] 78.50 ± 0.91 88.36 ± 0.57
ODC [43] 85.22 ± 0.34 91.35 ± 0.42
iLPC [45] 88.50 ± 0.75 92.46 ± 0.42
PEMnE-BMS∗ [32] 86.07 ± 0.25 91.09 ± 0.14
EASY 3×ResNet12 (ours) 84.48 ± 0.27 89.71 ± 0.14
Owner
Yassir BENDOU
Ph.D student working on Few-shot learning problems. I enjoy maths and coding.
Yassir BENDOU
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021