Semantic similarity computation with different state-of-the-art metrics

Related tags

Deep LearningTaxoSS
Overview

Semantic similarity computation with different state-of-the-art metrics

DescriptionInstallationUsageLicense


Description

TaxoSS is a semantic similarity library for Python which implements the state-of-the-art semantic similarity metrics like Resnik, JCN, and HSS.

Requirements

  • Python 3.6 or later
  • NLTK
  • NumPy
  • Pandas

Installation

TaxoSS can be installed through pip (the Python package manager) in the following way:

pip install taxoss

Usage

Semantic similarity functions

You can compute the semantic similarity in the following way:

from TaxoSS.functions import semantic_similarity
semantic_similarity('brother', 'sister', 'hss')

3.353513521371089

The function semantic_similarity(word1, word2, kind, ic) has these options for the argument kind:

  • hss -> HSS (default)
  • wup -> WUP
  • lcs -> LC
  • path_sim -> Shortest Path
  • resnik -> Resnik
  • jcn -> Jiang-Conrath
  • lin -> Lin
  • seco -> Seco

For the argument ic see the following section.

Information Content

Using a Wikipedia copus for calculating the Information Content (default of the argument ic):

from TaxoSS.functions import semantic_similarity
semantic_similarity('cat', 'dog', 'resnik')

6.169410755220327

Calculating Information Conent from a given corpus:

from TaxoSS.calculate_IC import calculate_IC
from TaxoSS.functions import semantic_similarity

calculate_IC(path_to_corpus, path_to_save_IC_file)
semantic_similarity('cat', 'dog', 'resnik', path_to_save_IC_file)

with path_to_save_IC_file a path into the virtual environment TaxoSS package, e.g. venv/lib/python3.6/site-packages/TaxoSS/data/prova_IC.csv.

Benchmark

HSS (ours) HSS (ours) WUP WUP LC LC Shortest Path Shortest Path Resnik Resnik Jiang-Conrath Jiang-Conrath Lin Lin Seco Seco
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
MEN 0.41 0.33 0.36 0.33 0.14 0.05 0.07 0.03 0.05 0.03 -0.05 -0.04 0.05 0.04 -0.01 0.03
MC30 0.74 0.69 0.74 0.73 0.33 0.21 0.22 0.3 0.13 0.03 -0.06 -0.01 0.05 0.01 0.13 -0.09
WSS 0.68 0.65 0.58 0.59 0.36 0.23 0.16 0.1 0.02 -0.03 0.04 0.06 0.03 0.06 -0.01 -0.04
Simlex999 0.4 0.38 0.45 0.43 0.26 0.15 0.2 0.16 -0.04 -0.04 0.12 0.14 0.12 0.14 -0.02 -0.08
MT287 0.46 0.31 0.4 0.28 0.26 0.12 0.11 0.11 0.03 0.04 0.18 0.16 0.22 0.17 0 -0.06
MT771 0.44 0.4 0.43 0.49 0.06 0.02 0.1 0.13 0 -0.01 0 0 0 0 -0.05 -0.03
Time per pair (s) 0.0007 0.0007 0.008 0.008 0.0055 0.0055 0.0064 0.0064 0.5586 0.5586 0.551 0.551 0.5866 0.5866 0.0013 0.0013
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022