(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

Overview

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework


Background: Outlier detection (OD) is a key data mining task for identifying abnormal objects from general samples with numerous high-stake applications including fraud detection and intrusion detection.

To scale outlier detection (OD) to large-scale, high-dimensional datasets, we propose TOD, a novel system that abstracts OD algorithms into basic tensor operations for efficient GPU acceleration.

The corresponding paper. The code is being cleaned up and released. Please watch and star!

One reason to use it:

On average, TOD is 11 times faster than PyOD!

If you need another reason: it can handle much larger datasets:more than a million sample OD within an hour!


TOD is featured for:

  • Unified APIs, detailed documentation, and examples for the easy use (under construction)
  • Supports more than 10 different OD algorithms and more are being added
  • TOD supports multi-GPU acceleration
  • Advanced techniques like provable quantization

Programming Model Interface

Complex OD algorithms can be abstracted into common tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction.png

For instance, ABOD and COPOD can be assembled by the basic tensor operators.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/abstraction_example.png

End-to-end Performance Comparison with PyOD

Overall, it is much (on avg. 11 times) faster than PyOD takes way less run time.

https://raw.githubusercontent.com/yzhao062/pytod/master/figs/run_time.png

Code is being released. Watch and star for the latest news!

Comments
  • Error while installing package

    Error while installing package

    I installed Pytorch 1.10 from their site. It seen in virtual environment. I try pip install pytod but when searching for pytorch, it cannot find it because it searches with the "pytorch" package, not the "torch" package.

    ERROR: Could not find a version that satisfies the requirement pytorch>=1.7 (from pytod) (from versions: 0.1.2, 1.0.2)
    ERROR: No matching distribution found for pytorch>=1.7
    
    opened by nuriakiin 1
  • decision_function() returns None

    decision_function() returns None

    Thanks for the package. When I try to implement LOF (or KNN) decision_function() on test data returns empty object. Is there a fix to this? Following is the code that replicates the issue (on GPU):

    from pytod.models.lof import LOF import torch import numpy as np

    x = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [75,80]], dtype=np.float32) x = torch.from_numpy(x)

    y = np.array([[6, 5], [1, 2], [3, 4], [5, 1], [11,12]], dtype=np.float32) y = torch.from_numpy(y)

    lof = LOF(n_neighbors=2, device = 'cuda:0')

    lof.fit(x)

    print(lof.decision_function(y))

    opened by sugatc 0
  • Support for novelty detection and changing distance metric with local outlier factor

    Support for novelty detection and changing distance metric with local outlier factor

    The current implementation of LOF doesn't allow changing the distance metric to 'cosine', for example or setting novelty = True which prevents it from being used for novelty detection task. It will be great if support can be added for these.

    opened by sugatc 2
  • can't fit model in colab

    can't fit model in colab

    when i try fit on any model in colab gpu instance i get the following error. my dataset has 2 columns and 1 million rows:


    AttributeError Traceback (most recent call last) in () 4 clf_name = 'KNN' 5 clf = LOF() ----> 6 clf.fit(X)

    3 frames /usr/local/lib/python3.7/dist-packages/pandas/core/generic.py in getattr(self, name) 5485 ): 5486 return self[name] -> 5487 return object.getattribute(self, name) 5488 5489 def setattr(self, name: str, value) -> None:

    AttributeError: 'DataFrame' object has no attribute 'to'

    opened by yairVanti 0
  • clean up reproducibility scripts

    clean up reproducibility scripts

    We are cleaning up these scripts for an easy run, while the primary results are reproducible with the compare_real_data.py (https://github.com/yzhao062/pytod/tree/main/reproducibility)

    enhancement 
    opened by yzhao062 0
Releases(v0.0.2)
  • v0.0.2(Jun 19, 2022)

    v<0.0.1>, <04/12/2021> -- Add LOF. v<0.0.1>, <04/23/2021> -- Add ABOD. v<0.0.2>, <06/19/2021> -- Add PCA and HBOS. v<0.0.2>, <06/19/2021> -- Turn on test suites.

    Now we have updated both the paper the repo to cover more algorithms.

    Source code(tar.gz)
    Source code(zip)
Owner
Yue Zhao
Ph.D. Student @ CMU. Outlier Detection Systems | ML Systems (MLSys) | Anomaly/Outlier Detection | AutoML. Twitter@ yzhao062
Yue Zhao
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022