Summary of related papers on visual attention

Overview

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper

image

πŸ”₯ (citations > 200)

  • TODO : Code about different attention mechanisms will come soon.
  • TODO : Code link will come soon.
  • TODO : collect more related papers. Contributions are welcome.

Channel attention

  • Squeeze-and-Excitation Networks(CVPR2018) pdf, (PAMI2019 version) pdf πŸ”₯
  • Image superresolution using very deep residual channel attention networks(ECCV2018) pdf πŸ”₯
  • Context encoding for semantic segmentation(CVPR2018) pdf πŸ”₯
  • Spatio-temporal channel correlation networks for action classification(ECCV2018) pdf
  • Global second-order pooling convolutional networks(CVPR2019) pdf
  • Srm : A style-based recalibration module for convolutional neural networks(ICCV2019) pdf
  • You look twice: Gaternet for dynamic filter selection in cnns(CVPR2019) pdf
  • Second-order attention network for single image super-resolution(CVPR2019) pdf πŸ”₯
  • Spsequencenet: Semantic segmentation network on 4d point clouds(CVPR2020) pdf
  • Ecanet: Efficient channel attention for deep convolutional neural networks (CVPR2020) pdf πŸ”₯
  • Gated channel transformation for visual recognition(CVPR2020) pdf
  • Fcanet: Frequency channel attention networks(ICCV2021) pdf

Spatial attention

  • Recurrent models of visual attention(NeurIPS2014), pdf πŸ”₯
  • Show, attend and tell: Neural image caption generation with visual attention(PMLR2015) pdf πŸ”₯
  • Draw: A recurrent neural network for image generation(ICML2015) pdf πŸ”₯
  • Spatial transformer networks(NeurIPS2015) pdf πŸ”₯
  • Multiple object recognition with visual attention(ICLR2015) pdf πŸ”₯
  • Action recognition using visual attention(arXiv2015) pdf πŸ”₯
  • Videolstm convolves, attends and flows for action recognition(arXiv2016) pdf πŸ”₯
  • Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition(CVPR2017) pdf πŸ”₯
  • Learning multi-attention convolutional neural network for fine-grained image recognition(ICCV2017) pdf πŸ”₯
  • Diversified visual attention networks for fine-grained object classification(TMM2017) pdf πŸ”₯
  • Attentional pooling for action recognition(NeurIPS2017) pdf πŸ”₯
  • Non-local neural networks(CVPR2018) pdf πŸ”₯
  • Attentional shapecontextnet for point cloud recognition(CVPR2018) pdf
  • Relation networks for object detection(CVPR2018) pdf πŸ”₯
  • a2-nets: Double attention networks(NeurIPS2018) pdf πŸ”₯
  • Attention-aware compositional network for person re-identification(CVPR2018) pdf πŸ”₯
  • Tell me where to look: Guided attention inference network(CVPR2018) pdf πŸ”₯
  • Pedestrian alignment network for large-scale person re-identification(TCSVT2018) pdf πŸ”₯
  • Learn to pay attention(ICLR2018) pdf πŸ”₯
  • Attention U-Net: Learning Where to Look for the Pancreas(MIDL2018) pdf πŸ”₯
  • Psanet: Point-wise spatial attention network for scene parsing(ECCV2018) pdf πŸ”₯
  • Self attention generative adversarial networks(ICML2019) pdf πŸ”₯
  • Attentional pointnet for 3d-object detection in point clouds(CVPRW2019) pdf
  • Co-occurrent features in semantic segmentation(CVPR2019) pdf
  • Attention augmented convolutional networks(ICCV2019) pdf πŸ”₯
  • Local relation networks for image recognition(ICCV2019) pdf
  • Latentgnn: Learning efficient nonlocal relations for visual recognition(ICML2019) pdf
  • Graph-based global reasoning networks(CVPR2019) pdf πŸ”₯
  • Gcnet: Non-local networks meet squeeze-excitation networks and beyond(ICCVW2019) pdf πŸ”₯
  • Asymmetric non-local neural networks for semantic segmentation(ICCV2019) pdf πŸ”₯
  • Looking for the devil in the details: Learning trilinear attention sampling network for fine-grained image recognition(CVPR2019) pdf
  • Second-order non-local attention networks for person re-identification(ICCV2019) pdf πŸ”₯
  • End-to-end comparative attention networks for person re-identification(ICCV2019) pdf πŸ”₯
  • Modeling point clouds with self-attention and gumbel subset sampling(CVPR2019) pdf
  • Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification(arXiv 2019) pdf
  • L2g autoencoder: Understanding point clouds by local-to-global reconstruction with hierarchical self-attention(arXiv 2019) pdf
  • Generative pretraining from pixels(PMLR2020) pdf
  • Exploring self-attention for image recognition(CVPR2020) pdf
  • Cf-sis: Semantic-instance segmentation of 3d point clouds by context fusion with self attention(MM20) pdf
  • Disentangled non-local neural networks(ECCV2020) pdf
  • Relation-aware global attention for person re-identification(CVPR2020) pdf
  • Segmentation transformer: Object-contextual representations for semantic segmentation(ECCV2020) pdf πŸ”₯
  • Spatial pyramid based graph reasoning for semantic segmentation(CVPR2020) pdf
  • Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation(CVPR2020) pdf
  • End-to-end object detection with transformers(ECCV2020) pdf πŸ”₯
  • Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling(CVPR2020) pdf
  • Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers(CVPR2021) pdf
  • An image is worth 16x16 words: Transformers for image recognition at scale(ICLR2021) pdf πŸ”₯
  • An empirical study of training selfsupervised vision transformers(CVPR2021) pdf
  • Ocnet: Object context network for scene parsing(IJCV 2021) pdf πŸ”₯
  • Point transformer(ICCV 2021) pdf
  • PCT: Point Cloud Transformer (CVMJ 2021) pdf
  • Pre-trained image processing transformer(CVPR 2021) pdf
  • An empirical study of training self-supervised vision transformers(ICCV 2021) pdf
  • Segformer: Simple and efficient design for semantic segmentation with transformers(arxiv 2021) pdf
  • Beit: Bert pre-training of image transformers(arxiv 2021) pdf
  • Beyond selfattention: External attention using two linear layers for visual tasks(arxiv 2021) pdf
  • Query2label: A simple transformer way to multi-label classification(arxiv 2021) pdf
  • Transformer in transformer(arxiv 2021) pdf

Temporal attention

  • Jointly attentive spatial-temporal pooling networks for video-based person re-identification (ICCV 2017) pdf πŸ”₯
  • Video person reidentification with competitive snippet-similarity aggregation and co-attentive snippet embedding(CVPR 2018) pdf
  • Scan: Self-and-collaborative attention network for video person re-identification (TIP 2019) pdf

Branch attention

  • Training very deep networks, (NeurIPS 2015) pdf πŸ”₯
  • Selective kernel networks,(CVPR 2019) pdf πŸ”₯
  • CondConv: Conditionally Parameterized Convolutions for Efficient Inference (NeurIPS 2019) pdf
  • Dynamic convolution: Attention over convolution kernels (CVPR 2020) pdf
  • ResNest: Split-attention networks (arXiv 2020) pdf πŸ”₯

ChannelSpatial attention

  • Residual attention network for image classification (CVPR 2017) pdf πŸ”₯
  • SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning,(CVPR 2017) pdf πŸ”₯
  • CBAM: convolutional block attention module, (ECCV 2018) pdf πŸ”₯
  • Harmonious attention network for person re-identification (CVPR 2018) pdf πŸ”₯
  • Recalibrating fully convolutional networks with spatial and channel β€œsqueeze and excitation” blocks (TMI 2018) pdf
  • Mancs: A multi-task attentional network with curriculum sampling for person re-identification (ECCV 2018) pdf πŸ”₯
  • Bam: Bottleneck attention module(BMVC 2018) pdf πŸ”₯
  • Pvnet: A joint convolutional network of point cloud and multi-view for 3d shape recognition (ACM MM 2018) pdf
  • Learning what and where to attend,(ICLR 2019) pdf
  • Dual attention network for scene segmentation (CVPR 2019) pdf πŸ”₯
  • Abd-net: Attentive but diverse person re-identification (ICCV 2019) pdf
  • Mixed high-order attention network for person re-identification (ICCV 2019) pdf
  • Mlcvnet: Multi-level context votenet for 3d object detection (CVPR 2020) pdf
  • Improving convolutional networks with self-calibrated convolutions (CVPR 2020) pdf
  • Relation-aware global attention for person re-identification (CVPR 2020) pdf
  • Strip Pooling: Rethinking spatial pooling for scene parsing (CVPR 2020) pdf
  • Rotate to attend: Convolutional triplet attention module, (WACV 2021) pdf
  • Coordinate attention for efficient mobile network design (CVPR 2021) pdf
  • Simam: A simple, parameter-free attention module for convolutional neural networks (ICML 2021) pdf

SpatialTemporal attention

  • An end-to-end spatio-temporal attention model for human action recognition from skeleton data(AAAI 2017) pdf πŸ”₯
  • Diversity regularized spatiotemporal attention for video-based person re-identification (ArXiv 2018) πŸ”₯
  • Interpretable spatio-temporal attention for video action recognition (ICCVW 2019) pdf
  • Hierarchical lstms with adaptive attention for visual captioning, (TPAMI 2020) pdf
  • Stat: Spatial-temporal attention mechanism for video captioning, (TMM 2020) pdf_link
  • Gta: Global temporal attention for video action understanding (ArXiv 2020) pdf
  • Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification (CVPR 2020) pdf
  • Read: Reciprocal attention discriminator for image-to-video re-identification, (ECCV 2020) pdf
  • Decoupled spatial-temporal transformer for video inpainting (ArXiv 2021) pdf
Owner
MenghaoGuo
Second-year Ph.D candidate at G2 group, Tsinghua University.
MenghaoGuo
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022