Summary of related papers on visual attention

Overview

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper

image

🔥 (citations > 200)

  • TODO : Code about different attention mechanisms will come soon.
  • TODO : Code link will come soon.
  • TODO : collect more related papers. Contributions are welcome.

Channel attention

  • Squeeze-and-Excitation Networks(CVPR2018) pdf, (PAMI2019 version) pdf 🔥
  • Image superresolution using very deep residual channel attention networks(ECCV2018) pdf 🔥
  • Context encoding for semantic segmentation(CVPR2018) pdf 🔥
  • Spatio-temporal channel correlation networks for action classification(ECCV2018) pdf
  • Global second-order pooling convolutional networks(CVPR2019) pdf
  • Srm : A style-based recalibration module for convolutional neural networks(ICCV2019) pdf
  • You look twice: Gaternet for dynamic filter selection in cnns(CVPR2019) pdf
  • Second-order attention network for single image super-resolution(CVPR2019) pdf 🔥
  • Spsequencenet: Semantic segmentation network on 4d point clouds(CVPR2020) pdf
  • Ecanet: Efficient channel attention for deep convolutional neural networks (CVPR2020) pdf 🔥
  • Gated channel transformation for visual recognition(CVPR2020) pdf
  • Fcanet: Frequency channel attention networks(ICCV2021) pdf

Spatial attention

  • Recurrent models of visual attention(NeurIPS2014), pdf 🔥
  • Show, attend and tell: Neural image caption generation with visual attention(PMLR2015) pdf 🔥
  • Draw: A recurrent neural network for image generation(ICML2015) pdf 🔥
  • Spatial transformer networks(NeurIPS2015) pdf 🔥
  • Multiple object recognition with visual attention(ICLR2015) pdf 🔥
  • Action recognition using visual attention(arXiv2015) pdf 🔥
  • Videolstm convolves, attends and flows for action recognition(arXiv2016) pdf 🔥
  • Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition(CVPR2017) pdf 🔥
  • Learning multi-attention convolutional neural network for fine-grained image recognition(ICCV2017) pdf 🔥
  • Diversified visual attention networks for fine-grained object classification(TMM2017) pdf 🔥
  • Attentional pooling for action recognition(NeurIPS2017) pdf 🔥
  • Non-local neural networks(CVPR2018) pdf 🔥
  • Attentional shapecontextnet for point cloud recognition(CVPR2018) pdf
  • Relation networks for object detection(CVPR2018) pdf 🔥
  • a2-nets: Double attention networks(NeurIPS2018) pdf 🔥
  • Attention-aware compositional network for person re-identification(CVPR2018) pdf 🔥
  • Tell me where to look: Guided attention inference network(CVPR2018) pdf 🔥
  • Pedestrian alignment network for large-scale person re-identification(TCSVT2018) pdf 🔥
  • Learn to pay attention(ICLR2018) pdf 🔥
  • Attention U-Net: Learning Where to Look for the Pancreas(MIDL2018) pdf 🔥
  • Psanet: Point-wise spatial attention network for scene parsing(ECCV2018) pdf 🔥
  • Self attention generative adversarial networks(ICML2019) pdf 🔥
  • Attentional pointnet for 3d-object detection in point clouds(CVPRW2019) pdf
  • Co-occurrent features in semantic segmentation(CVPR2019) pdf
  • Attention augmented convolutional networks(ICCV2019) pdf 🔥
  • Local relation networks for image recognition(ICCV2019) pdf
  • Latentgnn: Learning efficient nonlocal relations for visual recognition(ICML2019) pdf
  • Graph-based global reasoning networks(CVPR2019) pdf 🔥
  • Gcnet: Non-local networks meet squeeze-excitation networks and beyond(ICCVW2019) pdf 🔥
  • Asymmetric non-local neural networks for semantic segmentation(ICCV2019) pdf 🔥
  • Looking for the devil in the details: Learning trilinear attention sampling network for fine-grained image recognition(CVPR2019) pdf
  • Second-order non-local attention networks for person re-identification(ICCV2019) pdf 🔥
  • End-to-end comparative attention networks for person re-identification(ICCV2019) pdf 🔥
  • Modeling point clouds with self-attention and gumbel subset sampling(CVPR2019) pdf
  • Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification(arXiv 2019) pdf
  • L2g autoencoder: Understanding point clouds by local-to-global reconstruction with hierarchical self-attention(arXiv 2019) pdf
  • Generative pretraining from pixels(PMLR2020) pdf
  • Exploring self-attention for image recognition(CVPR2020) pdf
  • Cf-sis: Semantic-instance segmentation of 3d point clouds by context fusion with self attention(MM20) pdf
  • Disentangled non-local neural networks(ECCV2020) pdf
  • Relation-aware global attention for person re-identification(CVPR2020) pdf
  • Segmentation transformer: Object-contextual representations for semantic segmentation(ECCV2020) pdf 🔥
  • Spatial pyramid based graph reasoning for semantic segmentation(CVPR2020) pdf
  • Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation(CVPR2020) pdf
  • End-to-end object detection with transformers(ECCV2020) pdf 🔥
  • Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling(CVPR2020) pdf
  • Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers(CVPR2021) pdf
  • An image is worth 16x16 words: Transformers for image recognition at scale(ICLR2021) pdf 🔥
  • An empirical study of training selfsupervised vision transformers(CVPR2021) pdf
  • Ocnet: Object context network for scene parsing(IJCV 2021) pdf 🔥
  • Point transformer(ICCV 2021) pdf
  • PCT: Point Cloud Transformer (CVMJ 2021) pdf
  • Pre-trained image processing transformer(CVPR 2021) pdf
  • An empirical study of training self-supervised vision transformers(ICCV 2021) pdf
  • Segformer: Simple and efficient design for semantic segmentation with transformers(arxiv 2021) pdf
  • Beit: Bert pre-training of image transformers(arxiv 2021) pdf
  • Beyond selfattention: External attention using two linear layers for visual tasks(arxiv 2021) pdf
  • Query2label: A simple transformer way to multi-label classification(arxiv 2021) pdf
  • Transformer in transformer(arxiv 2021) pdf

Temporal attention

  • Jointly attentive spatial-temporal pooling networks for video-based person re-identification (ICCV 2017) pdf 🔥
  • Video person reidentification with competitive snippet-similarity aggregation and co-attentive snippet embedding(CVPR 2018) pdf
  • Scan: Self-and-collaborative attention network for video person re-identification (TIP 2019) pdf

Branch attention

  • Training very deep networks, (NeurIPS 2015) pdf 🔥
  • Selective kernel networks,(CVPR 2019) pdf 🔥
  • CondConv: Conditionally Parameterized Convolutions for Efficient Inference (NeurIPS 2019) pdf
  • Dynamic convolution: Attention over convolution kernels (CVPR 2020) pdf
  • ResNest: Split-attention networks (arXiv 2020) pdf 🔥

ChannelSpatial attention

  • Residual attention network for image classification (CVPR 2017) pdf 🔥
  • SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning,(CVPR 2017) pdf 🔥
  • CBAM: convolutional block attention module, (ECCV 2018) pdf 🔥
  • Harmonious attention network for person re-identification (CVPR 2018) pdf 🔥
  • Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks (TMI 2018) pdf
  • Mancs: A multi-task attentional network with curriculum sampling for person re-identification (ECCV 2018) pdf 🔥
  • Bam: Bottleneck attention module(BMVC 2018) pdf 🔥
  • Pvnet: A joint convolutional network of point cloud and multi-view for 3d shape recognition (ACM MM 2018) pdf
  • Learning what and where to attend,(ICLR 2019) pdf
  • Dual attention network for scene segmentation (CVPR 2019) pdf 🔥
  • Abd-net: Attentive but diverse person re-identification (ICCV 2019) pdf
  • Mixed high-order attention network for person re-identification (ICCV 2019) pdf
  • Mlcvnet: Multi-level context votenet for 3d object detection (CVPR 2020) pdf
  • Improving convolutional networks with self-calibrated convolutions (CVPR 2020) pdf
  • Relation-aware global attention for person re-identification (CVPR 2020) pdf
  • Strip Pooling: Rethinking spatial pooling for scene parsing (CVPR 2020) pdf
  • Rotate to attend: Convolutional triplet attention module, (WACV 2021) pdf
  • Coordinate attention for efficient mobile network design (CVPR 2021) pdf
  • Simam: A simple, parameter-free attention module for convolutional neural networks (ICML 2021) pdf

SpatialTemporal attention

  • An end-to-end spatio-temporal attention model for human action recognition from skeleton data(AAAI 2017) pdf 🔥
  • Diversity regularized spatiotemporal attention for video-based person re-identification (ArXiv 2018) 🔥
  • Interpretable spatio-temporal attention for video action recognition (ICCVW 2019) pdf
  • Hierarchical lstms with adaptive attention for visual captioning, (TPAMI 2020) pdf
  • Stat: Spatial-temporal attention mechanism for video captioning, (TMM 2020) pdf_link
  • Gta: Global temporal attention for video action understanding (ArXiv 2020) pdf
  • Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification (CVPR 2020) pdf
  • Read: Reciprocal attention discriminator for image-to-video re-identification, (ECCV 2020) pdf
  • Decoupled spatial-temporal transformer for video inpainting (ArXiv 2021) pdf
Owner
MenghaoGuo
Second-year Ph.D candidate at G2 group, Tsinghua University.
MenghaoGuo
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022