SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

Overview

SSL_SLAM2

Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example)

This repo is an extension work of SSL_SLAM. Similar to RTABMAP, SSL_SLAM2 separates the mapping module and localization module. Map saving and map optimization is enabled in the mapping unit. Map loading and localization is enabled in the localziation unit.

This code is an implementation of paper "Lightweight 3-D Localization and Mapping for Solid-State LiDAR", published in IEEE Robotics and Automation Letters, 2021 paper

A summary video demo can be found at Video

Modifier: Wang Han, Nanyang Technological University, Singapore

Running speed: 20 Hz on Intel NUC, 30 Hz on PC

1. Solid-State Lidar Sensor Example

1.1 Scene reconstruction example

1.2 Localization with built map

1.3 Comparison

2. Prerequisites

2.1 Ubuntu and ROS

Ubuntu 64-bit 18.04.

ROS Melodic. ROS Installation

2.2. Ceres Solver

Follow Ceres Installation.

2.3. PCL

Follow PCL Installation.

Tested with 1.8.1

2.4. GTSAM

Follow GTSAM Installation.

2.5. Trajectory visualization

For visualization purpose, this package uses hector trajectory sever, you may install the package by

sudo apt-get install ros-melodic-hector-trajectory-server

Alternatively, you may remove the hector trajectory server node if trajectory visualization is not needed

3. Sensor Setup

If you have new Realsense L515 sensor, you may follow the below setup instructions

3.1 L515

3.2 Librealsense

Follow Librealsense Installation

3.3 Realsense_ros

Copy realsense_ros package to your catkin folder

    cd ~/catkin_ws/src
    git clone https://github.com/IntelRealSense/realsense-ros.git
    cd ..
    catkin_make

4. Build SSL_SLAM2

4.1 Clone repository:

    cd ~/catkin_ws/src
    git clone https://github.com/wh200720041/ssl_slam2.git
    cd ..
    catkin_make
    source ~/catkin_ws/devel/setup.bash

4.2 Download test rosbag

You may download our recorded data: MappingTest.bag (3G) and LocalizationTest.bag (6G)if you dont have realsense L515, and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LocalizationTest.zip
unzip MappingTest.zip

4.3 Map Building

map optimization and building

    roslaunch ssl_slam2 ssl_slam2_mapping.launch

The map optimization is performed based on loop closure, you have to specify the loop clousre manually in order to trigger global optimization. To save map, open a new terminal and

  rosservice call /save_map

Upon calling the serviece, the map will be automatically saved. It is recommended to have a loop closure to reduce the drifts. Once the service is called, loop closure will be checked. For example, in the rosbag provided, the loop closure appears at frame 1060-1120, thus, when you see "total_frame 1070" or "total_frame 1110" you may immediately type

  rosservice call /save_map

Since the current frame is between 1060 and 1120, the loop closure will be triggered automatically and the global map will be optimized and saved

4.4 Localization

Type

    roslaunch ssl_slam2 ssl_slam2_localization.launch

If your map is large, it may takes a while to load

4.5 Parameters Explanation

The map size depends on number of keyframes used. The more keyframes used for map buildin, the larger map will be.

min_map_update_distance: distance threshold to add a keyframe. higher means lower update rate. min_map_update_angle: angle threshold to add a keyframe. higher means lower update rate. min_map_update_frame: time threshold to add a keyframe. higher means lower update rate.

4.6 Relocalization

The relocalization module under tracking loss is still under development. You must specify the robot init pose w.r.t. the map coordinate if the starting position is not the origin of map. You can set this by

    <param name="offset_x" type="double" value="0.0" />
    <param name="offset_y" type="double" value="0.0" />
    <param name="offset_yaw" type="double" value="0.0" />

4.7 Running speed

The realsense is running at 30Hz and some computer may not be able to support such high processing rate. You may reduce the processing rate by skipping frames. You can do thid by setting the

<param name="skip_frames" type="int" value="1" />

1 implies no skip frames, i.e., 30Hz; implies skip 1 frames, i.e., 15Hz. For small map building, you can do it online. however, it is recommended to record a rosbag and build map offline for large mapping since the dense map cannot be generated in real-time.

5 Map Building with multiple loop closure places

5.1 Dataset

You may download a larger dataset LargeMappingTest.bag (10G), and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LargeMappingTest.zip

5.2 Map Building

Two loop closure places appear at frame 0-1260 and 1270-3630, i.e., frame 0 and frame 1260 are the same place, frame 1270 adn 3630 are the same place. Run

    roslaunch ssl_slam2 ssl_slam2_large_mapping.launch

open a new terminal, when you see "total_frame 1260", immediately type

  rosservice call /save_map

when you see "total_frame 3630", immediately type again

  rosservice call /save_map

6. Citation

If you use this work for your research, you may want to cite the paper below, your citation will be appreciated

@article{wang2021lightweight,
  author={H. {Wang} and C. {Wang} and L. {Xie}},
  journal={IEEE Robotics and Automation Letters}, 
  title={Lightweight 3-D Localization and Mapping for Solid-State LiDAR}, 
  year={2021},
  volume={6},
  number={2},
  pages={1801-1807},
  doi={10.1109/LRA.2021.3060392}}
Owner
Wang Han 王晗
I am currently a Phd Candidate at Nanyang Technological University, Singapore, specialize in computer vision and robotics
Wang Han 王晗
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022