Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

Related tags

Deep LearningVaxNeRF
Overview

VaxNeRF

Paper | Google Colab Open In Colab

This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).
VaxNeRF provides very fast training and slightly higher scores compared to original (Jax)NeRF!!

Updates!

Visual Hull (1sec)
NeRF (10min)
VaxNeRF (10min)
Vax-MipNeRF (10min)


(The results of Vax-MipNeRF are also included in this figure.)

Installation

Please see the README of JaxNeRF.

The jax and jaxlib versions that we have tested are as follows.

jax                     0.2.24
jaxlib                  0.1.69+cuda111
jax                     0.2.17
jaxlib                  0.1.65+cuda110

Quick start

Training

# make a bounding volume voxel using Visual Hull
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --dilation 7 \
    --thresh 1. \
    --alpha_bkgd

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800 \
    --render_every 2500

Evaluation

python eval.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800

Try other NeRFs

Original NeRF

python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --train_dir logs/lego_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

VaxNeRF with hierarchical sampling

# small `num_xx_samples` needs more dilated voxel (see our paper)
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --dilation 47 \
    --thresh 1. \
    --alpha_bkgd

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --train_dir logs/lego_vax_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

Option details

Visual Hull

  • Use --dilation 11 / --dilation 51 for NSVF-Synthetic dataset for training VaxNeRF without / with hierarchical sampling.
  • The following options were used
  • Since the Lifestyle, Spaceship, Steamtrain scenes (included in the NSVF dataset) do not have alpha channel, please use following options and remove --alpha_bkgd option.
    • Lifestyle: --thresh 0.95, Spaceship: --thresh 0.9, Steamtrain: --thresh 0.95

NeRFs

  • We used --small_lr_at_first option for original NeRF training on the Robot and Spaceship scenes to avoid local minimum.

Code modification from JaxNeRF

  • You can see the main difference between (Jax)NeRF (jaxnerf branch) and VaxNeRF (vaxnerf branch) here
  • The main branch (derived from the vaxnerf branch) contains the following features.
    • Support for original NeRF
    • Support for VaxNeRF with hierarchical sampling
    • Support for the NSVF-Synthetic dataset
    • Visualization of number of sampling points evaluated by MLP (VaxNeRF)
    • Automatic choice of the number of sampling points to be evaluated (VaxNeRF)

Citation

Please use the following bibtex for citations:

@article{kondo2021vaxnerf,
  title={VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field},
  author={Kondo, Naruya and Ikeda, Yuya and Tagliasacchi, Andrea and Matsuo, Yutaka and Ochiai, Yoichi and Gu, Shixiang Shane},
  journal={arXiv preprint arXiv:2111.13112},
  year={2021}
}

and also cite the original NeRF paper and JaxNeRF implementation:

@inproceedings{mildenhall2020nerf,
  title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
  author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
  year={2020},
  booktitle={ECCV},
}

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

Acknowledgement

We'd like to express deep thanks to the inventors of NeRF and JaxNeRF.

Have a good VaxNeRF'ed life!

Owner
naruya
May the "Metaverse" be a warm-hearted world. / first-year master's student
naruya
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022