[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Overview

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Code for Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion. To acquire dataset, please contact [email protected].

Introduction

We proposed a unified network called CorrFusionNet for scene change detection. The proposed CorrFusionNet firstly extracts the features of the bi-temporal inputs with deep convolutional networks. Then the extracted features will be projected into a lower dimension space to computed the instance level canonical correlation. The cross-temporal fusion will be performed based on the computed correlation in the CorrFusion module. The final scene classification and scene change results are obtained with softmax activation layers. In the objective function, we introduced a new formulation for calculating the temporal correlation. The visual results and quantitative assessments both demonstrated that our proposed CorrFusionNet could outperform other scene change detection methods and some state-of-the-art methods for image classification.

CorrFusion Module

  • The proposed CorrFusion module:
  • The proposed CorrFusionNet:

Requirements

scipy==1.1.0
matplotlib==3.0.3
h5py==2.8.0
numpy==1.16.3
tensorflow_gpu==1.8.0
Pillow==6.2.1
scikit_learn==0.21.3

Data

  • Overview of our Wuhan dataset

The images are stored in npz format.

├─trn
│      0-5000.npz
│      10000-15000.npz
│      15000-16488.npz
│      5000-10000.npz
│
├─tst
│      0-4712.npz
│
└─val
       0-2355.npz

Usage

Install the requirements

pip install -r requirements.txt

Run the training code

python train_cnn.py [-h] [-g GPU] [-b BATCH_SIZE] [-e EPOCHES]
                    [-n NUM_CLASSES] [-tb USE_TFBOARD] [-sm SAVE_MODEL]
                    [-log SAVE_LOG] [-trn TRN_DIR] [-tst TST_DIR]
                    [-val VAL_DIR] [-lpath LOG_PATH] [-mpath MODEL_PATH]
                    [-tbpath TB_PATH] [-rpath RESULT_PATH]

(see parser.py)

Evaluate on a trained model:

  • Download a trained model here.

  • Evaluation

python evaluate_model.py [-h] [-g GPU] [-m MODEL_DIR] [-tst TST_DIR]
                         [-val VAL_DIR]

optional arguments:
  -h, --help            show this help message and exit
  -g GPU, --gpu GPU     gpu device ID
  -m MODEL_DIR, --model_dir MODEL_DIR
                        model directory
  -tst TST_DIR, --tst_dir TST_DIR
                        testing file dir
  -val VAL_DIR, --val_dir VAL_DIR
                        validation file dir

Results

  • The results of quantitative assessments:
  • Predictions on our dataset:

Contact

For any questions, you're welcomed to contact Lixiang Ru.

Owner
Lixiang Ru
@rulixiang
Lixiang Ru
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022