Use deep learning, genetic programming and other methods to predict stock and market movements

Overview

StockPredictions

Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements.

Both successful and unsuccessful experiments will be posted. This section is things that are currently being explored. Completed projects will be wrapped up and moved to another repository to keep things simple.

The main goal of this project is to learn more about time series analysis and prediction. The stock market just happens to have lots of complicated time series and available data

The first evolving neural net does the best job of predicting daily changes. It's impressive. That'll be my first go to tool

The NASDAQ Evolved Network is a good simple example that should be easy to apply to any index

Data sources:

http://finance.yahoo.com/

https://fred.stlouisfed.org/

https://stooq.com

Data and the cleaning programs:

https://github.com/timestocome/StockMarketData

Recommended Reading:

http://www.e-m-h.org/Fama70.pdf Efficient Market Hypothesis

http://faculty.chicagobooth.edu/workshops/finance/pdf/Shleiferbff.pdf Bubbles for FAMA

http://www.unofficialgoogledatascience.com/2017/04/our-quest-for-robust-time-series.html How Google does series predictions

http://www.econ.ucla.edu/workingpapers/wp239.pdf Let's Take the Con Out of Economics

https://www.manning.com/books/machine-learning-with-tensorflow Meap Machine Learning with TensorFlow

https://www.amazon.com/gp/product/B01AFXZ2F4/ Everybody Lies, Big Data, New Data, and What the Internet can tell us about who we really are

https://www.amazon.com/gp/product/B06XDWV2Z2 The Money Formula: Dodgy Finance, Pseudo Science, and How Mathematicians Took Over the Markets

https://blog.twitter.com/2015/introducing-practical-and-robust-anomaly-detection-in-a-time-series Finding anomalies in time series

https://www.wired.com/2009/02/wp-quant/ Wired: The Formula that Killed Wall St

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6419.2007.00519.x/abstract What do we know about the profitability of technical analysis

https://eng.uber.com/neural-networks/ Engineering extreme event forecasting at Uber with RNNs

http://lib.ugent.be/fulltxt/RUG01/001/315/567/RUG01-001315567_2010_0001_AC.pdf An empirical analysis of algorithmic trading on financial markets

http://www.radio.goldseek.com/bachelier-thesis-theory-of-speculation-en.pdf The Theory of Speculation, L. Bachelier

http://dl.acm.org/citation.cfm?id=1541882 Anomaly Detection: A Survey 2009 ACM

http://www.mrao.cam.ac.uk/~mph/Technical_Analysis.pdf Technical Analysis

https://is.muni.cz/th/422802/fi_b/bakalarka_final.pdf Prediction of Financial Markets Using Deep Learning ( see: https://github.com/timestocome/FullyConnectedForwardFeedNets for an example fully connected deep learning network )

http://www.doc.ic.ac.uk/teaching/distinguished-projects/2015/j.cumming.pdf An Investigation into the Use of Reinforcement Learning Techniques within the Algorithmic Trading Domain

On my reading list:

http://socserv.mcmaster.ca/racine/ECO0301.pdf Nonparametric Econometrics: A Primer

http://natureofcode.com/ The Nature of Code

http://www.penguinrandomhouse.com/books/314049/scale-by-geoffrey-west/9781594205583/ Scale: The universal laws of growth...

https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk The Drunkard's Walk

Useful Websites:

http://www.nber.org/ The National Bureau of Economic Research

https://fred.stlouisfed.org/ FRED, Federal Reserve Bank of St Louis

http://www.zerohedge.com/ ZeroHedge, mostly noise, occasionally something useful appears

Cool tools:

https://facebookincubator.github.io/prophet/docs/quick_start.html Facebook Prophet - Python and R time series prediction library

https://research.google.com/pubs/pub41854.html Inferring causal impact using bayesian structural time series models ( Google has an R package http://google.github.io/CausalImpact/ to go with this paper )

https://gbeced.github.io/pyalgotrade/ Python Algorithmic Trading Library

http://pybrain.org/ PyBrain Machine Learning Library

https://github.com/CodeReclaimers/neat-python Python NEAT Library for evolving neural networks

Podcasts:

http://www.podcastchart.com/podcasts/berkshire-hathaway-2017-annual-shareholders-meeting/episodes/berkshire-hathaway-vice-chairman-charlie-munger-speaks-with-yahoo-finance-editor-in-chief-andy-serwer 2017 Berkshire Hathaway Shareholder's Meeting

Owner
Linda MacPhee-Cobb
Physicist, Computer Scientist Interests: AI, Machine Learning, Signal Processing, Sensors, Robotics, Evolutionary Algorithms and Hardware
Linda MacPhee-Cobb
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022