CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

Related tags

Deep LearningCLOCs
Overview

CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Environment

Tested on python3.6, pytorch 1.1.0, Ubuntu 16.04/18.04.

Performance on KITTI validation set (3712 training, 3769 validation)

CLOCs_SecCas (SECOND+Cascade-RCNN) VS SECOND:

new 40 recall points
Car:      [email protected]       [email protected]   [email protected]
bev:  AP: 96.51 / 95.61, 92.37 / 89.54, 89.41 / 86.96
3d:   AP: 92.74 / 90.97, 82.90 / 79.94, 77.75 / 77.09
old 11 recall points
Car:      [email protected]       [email protected]   [email protected]
bev:  AP: 90.52 / 90.36, 89.29 / 88.10, 87.84 / 86.80
3d:   AP: 89.49 / 88.31, 79.31 / 77.99, 77.36 / 76.52

Install

The code is developed based on SECOND-1.5, please follow the SECOND-1.5 to setup the environment, the dependences for SECOND-1.5 are needed.

pip install shapely fire pybind11 tensorboardX protobuf scikit-image numba pillow

Follow the instructions to install spconv v1.0 (commit 8da6f96). Although CLOCs fusion does not need spconv, but SECOND codebase expects it to be correctly configured.

Then adding the CLOCs directory to your PYTHONPATH, you could add the following line (change '/dir/to/your/CLOCs/' according to your CLOCs directory) in your .bashrc under home directory.

export PYTHONPATH=$PYTHONPATH:'/dir/to/your/CLOCs/'

Prepare dataset (KITTI)

Download KITTI dataset and organize the files as follows:

└── KITTI_DATASET_ROOT
       ├── training    <-- 7481 train data
       |   ├── image_2 <-- for visualization
       |   ├── calib
       |   ├── label_2
       |   ├── velodyne
       |   └── velodyne_reduced <-- empty directory
       └── testing     <-- 7580 test data
       |   ├── image_2 <-- for visualization
       |   ├── calib
       |   ├── velodyne
       |   └── velodyne_reduced <-- empty directory
       └── kitti_dbinfos_train.pkl
       ├── kitti_infos_train.pkl
       ├── kitti_infos_test.pkl
       ├── kitti_infos_val.pkl
       └── kitti_infos_trainval.pkl

Next, you could follow the SECOND-1.5 instructions to create kitti infos, reduced point cloud and groundtruth-database infos, or just download these files from here and put them in the correct directories as shown above.

Fusion of SECOND and Cascade-RCNN

Preparation

CLOCs operates on the combined output of a 3D detector and a 2D detector. For this example, we use SECOND as the 3D detector, Cascade-RCNN as the 2D detector.

  1. For this example, we use detections with sigmoid scores, you could download the Cascade-RCNN detections for the KITTI train and validations set from here file name:'cascade_rcnn_sigmoid_data', or you could run the 2D detector by your self and save the results for the fusion. You could also use your own 2D detector to generate these 2D detections and save them in KITTI format for fusion.

  2. Then download the pretrained SECOND models from here file name: 'second_model.zip', create an empty directory named model_dir under your CLOCs root directory and unzip the files to model_dir. Your CLOCs directory should look like this:

└── CLOCs
       ├── d2_detection_data    <-- 2D detection candidates data
       ├── model_dir       <-- SECOND pretrained weights extracted from 'second_model.zip' 
       ├── second 
       ├── torchplus 
       ├── README.md
  1. Then modify the config file carefully:
train_input_reader: {
  ...
  database_sampler {
    database_info_path: "/dir/to/your/kitti_dbinfos_train.pkl"
    ...
  }
  kitti_info_path: "/dir/to/your/kitti_infos_train.pkl"
  kitti_root_path: "/dir/to/your/KITTI_DATASET_ROOT"
}
...
train_config: {
  ...
  detection_2d_path: "/dir/to/2d_detection/data"
}
...
eval_input_reader: {
  ...
  kitti_info_path: "/dir/to/your/kitti_infos_val.pkl"
  kitti_root_path: "/dir/to/your/KITTI_DATASET_ROOT"
}

Train

python ./pytorch/train.py train --config_path=./configs/car.fhd.config --model_dir=/dir/to/your_model_dir

The trained models and related information will be saved in '/dir/to/your_model_dir'

Evaluation

python ./pytorch/train.py evaluate --config_path=./configs/car.fhd.config --model_dir=/dir/to/your/trained_model --measure_time=True --batch_size=1

For example if you want to test the pretrained model downloaded from here file name: 'CLOCs_SecCas_pretrained.zip', unzip it, then you could run:

python ./pytorch/train.py evaluate --config_path=./configs/car.fhd.config --model_dir=/dir/to/your/CLOCs_SecCas_pretrained --measure_time=True --batch_size=1

If you want to export KITTI format label files, add pickle_result=False at the end of the above commamd.

Fusion of other 3D and 2D detectors

Step 1: Prepare the 2D detection candidates, run your 2D detector and save the results in KITTI format. It is recommended to run inference with NMS score threshold equals to 0 (no score thresholding), but if you don't know how to setup this, it is also fine for CLOCs.

Step 2: Prepare the 3D detection candidates, run your 3D detector and save the results in the format that SECOND could read, including a matrix with shape of N by 7 that contains the N 3D bounding boxes, and a N-element vector for the 3D confidence scores. 7 parameters correspond to the representation of a 3D bounding box. Be careful with the order and coordinate of the 7 parameters, if the parameters are in LiDAR coordinate, the order should be x, y, z, width, length, height, heading; if the parameters are in camera coordinate, the orderr should be x, y, z, lenght, height, width, heading. The details of the transformation functions can be found in file './second/pytorch/core/box_torch_ops.py'.

Step 3: Since the number of detection candidates are different for different 2D/3D detectors, you need to modify the corresponding parameters in the CLOCs code. Then train the CLOCs fusion. For example, there are 70400 (200x176x2) detection candidates in each frame from SECOND with batch size equals to 1. It is a very large number because SECOND is a one-stage detector, for other multi-stage detectors, you could just take the detection candidates before the final NMS function, that would reduce the number of detection candidates to hundreds or thousands.

Step 4: The output of CLOCs are fused confidence scores for all the 3D detection candidates, so you need to replace the old confidence scores (from your 3D detector) with the new fused confidence scores from CLOCs for post processing and evaluation. Then these 3D detection candidates with the corresponding CLOCs fused scores are treated as the input for your 3D detector post processing functions to generate final predictions for evaluation.

Citation

If you find this work useful in your research, please consider citing:

@article{pang2020clocs,
  title={CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection},
  author={Pang, Su and Morris, Daniel and Radha, Hayder},
  booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  year={2020}
  organization={IEEE}
}

Acknowledgement

Our code are mainly based on SECOND, thanks for their excellent work!

Owner
Su Pang
PhD working in autonomous vehicles
Su Pang
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022