PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

Overview

neural-combinatorial-rl-pytorch

PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

I have implemented the basic RL pretraining model with greedy decoding from the paper. An implementation of the supervised learning baseline model is available here. Instead of a critic network, I got my results below on TSP from using an exponential moving average critic. The critic network is simply commented out in my code right now. From correspondence with a few others, it was determined that the exponential moving average critic significantly helped improve results.

My implementation uses a stochastic decoding policy in the pointer network, realized via PyTorch's torch.multinomial(), during training, and beam search (not yet finished, only supports 1 beam a.k.a. greedy) for decoding when testing the model.

Currently, there is support for a sorting task and the planar symmetric Euclidean TSP.

See main.sh for an example of how to run the code.

Use the --load_path $LOAD_PATH and --is_train False flags to load a saved model.

To load a saved model and view the pointer network's attention layer, also use the --plot_attention True flag.

Please, feel free to notify me if you encounter any errors, or if you'd like to submit a pull request to improve this implementation.

Adding other tasks

This implementation can be extended to support other combinatorial optimization problems. See sorting_task.py and tsp_task.py for examples on how to add. The key thing is to provide a dataset class and a reward function that takes in a sample solution, selected by the pointer network from the input, and returns a scalar reward. For the sorting task, the agent received a reward proportional to the length of the longest strictly increasing subsequence in the decoded output (e.g., [1, 3, 5, 2, 4] -> 3/5 = 0.6).

Dependencies

  • Python=3.6 (should be OK with v >= 3.4)
  • PyTorch=0.2 and 0.3
  • tqdm
  • matplotlib
  • tensorboard_logger

PyTorch 0.4 compatibility is available on branch pytorch-0.4.

TSP Results

Results for 1 random seed over 50 epochs (each epoch is 10,000 batches of size 128). After each epoch, I validated performance on 1000 held out graphs. I used the same hyperparameters from the paper, as can be seen in main.sh. The dashed line shows the value indicated in Table 2 of Bello, et. al for comparison. The log scale x axis for the training reward is used to show how the tour length drops early on.

TSP 20 Train TSP 20 Val TSP 50 Train TSP 50 Val

Sort Results

I trained a model on sort10 for 4 epochs of 1,000,000 randomly generated samples. I tested it on a dataset of size 10,000. Then, I tested the same model on sort15 and sort20 to test the generalization capabilities.

Test results on 10,000 samples (A reward of 1.0 means the network perfectly sorted the input):

task average reward variance
sort10 0.9966 0.0005
sort15 0.7484 0.0177
sort20 0.5586 0.0060

Example prediction on sort10:

input: [4, 7, 5, 0, 3, 2, 6, 8, 9, 1]
output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Attention visualization

Plot the pointer network's attention layer with the argument --plot_attention True

TODO

  • Add RL pretraining-Sampling
  • Add RL pretraining-Active Search
  • Active Search
  • Asynchronous training a la A3C
  • Refactor USE_CUDA variable
  • Finish implementing beam search decoding to support > 1 beam
  • Add support for variable length inputs

Acknowledgements

Special thanks to the repos devsisters/neural-combinatorial-rl-tensorflow and MaximumEntropy/Seq2Seq-PyTorch for getting me started, and @ricgama for figuring out that weird bug with clone()

Owner
Patrick E.
Machine Learning PhD Candidate at Univ. of Florida. Deep generative models | object-centric representation learning | RL | transportation
Patrick E.
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022