PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

Overview

pytorch-a2c-ppo-acktr

Update (April 12th, 2021)

PPO is great, but Soft Actor Critic can be better for many continuous control tasks. Please check out my new RL repository in jax.

Please use hyper parameters from this readme. With other hyper parameters things might not work (it's RL after all)!

This is a PyTorch implementation of

  • Advantage Actor Critic (A2C), a synchronous deterministic version of A3C
  • Proximal Policy Optimization PPO
  • Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation ACKTR
  • Generative Adversarial Imitation Learning GAIL

Also see the OpenAI posts: A2C/ACKTR and PPO for more information.

This implementation is inspired by the OpenAI baselines for A2C, ACKTR and PPO. It uses the same hyper parameters and the model since they were well tuned for Atari games.

Please use this bibtex if you want to cite this repository in your publications:

@misc{pytorchrl,
  author = {Kostrikov, Ilya},
  title = {PyTorch Implementations of Reinforcement Learning Algorithms},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail}},
}

Supported (and tested) environments (via OpenAI Gym)

I highly recommend PyBullet as a free open source alternative to MuJoCo for continuous control tasks.

All environments are operated using exactly the same Gym interface. See their documentations for a comprehensive list.

To use the DeepMind Control Suite environments, set the flag --env-name dm. . , where domain_name and task_name are the name of a domain (e.g. hopper) and a task within that domain (e.g. stand) from the DeepMind Control Suite. Refer to their repo and their tech report for a full list of available domains and tasks. Other than setting the task, the API for interacting with the environment is exactly the same as for all the Gym environments thanks to dm_control2gym.

Requirements

In order to install requirements, follow:

# PyTorch
conda install pytorch torchvision -c soumith

# Other requirements
pip install -r requirements.txt

Contributions

Contributions are very welcome. If you know how to make this code better, please open an issue. If you want to submit a pull request, please open an issue first. Also see a todo list below.

Also I'm searching for volunteers to run all experiments on Atari and MuJoCo (with multiple random seeds).

Disclaimer

It's extremely difficult to reproduce results for Reinforcement Learning methods. See "Deep Reinforcement Learning that Matters" for more information. I tried to reproduce OpenAI results as closely as possible. However, majors differences in performance can be caused even by minor differences in TensorFlow and PyTorch libraries.

TODO

  • Improve this README file. Rearrange images.
  • Improve performance of KFAC, see kfac.py for more information
  • Run evaluation for all games and algorithms

Visualization

In order to visualize the results use visualize.ipynb.

Training

Atari

A2C

python main.py --env-name "PongNoFrameskip-v4"

PPO

python main.py --env-name "PongNoFrameskip-v4" --algo ppo --use-gae --lr 2.5e-4 --clip-param 0.1 --value-loss-coef 0.5 --num-processes 8 --num-steps 128 --num-mini-batch 4 --log-interval 1 --use-linear-lr-decay --entropy-coef 0.01

ACKTR

python main.py --env-name "PongNoFrameskip-v4" --algo acktr --num-processes 32 --num-steps 20

MuJoCo

Please always try to use --use-proper-time-limits flag. It properly handles partial trajectories (see https://github.com/sfujim/TD3/blob/master/main.py#L123).

A2C

python main.py --env-name "Reacher-v2" --num-env-steps 1000000

PPO

python main.py --env-name "Reacher-v2" --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits

ACKTR

ACKTR requires some modifications to be made specifically for MuJoCo. But at the moment, I want to keep this code as unified as possible. Thus, I'm going for better ways to integrate it into the codebase.

Enjoy

Atari

python enjoy.py --load-dir trained_models/a2c --env-name "PongNoFrameskip-v4"

MuJoCo

python enjoy.py --load-dir trained_models/ppo --env-name "Reacher-v2"

Results

A2C

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

PPO

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

ACKTR

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

Owner
Ilya Kostrikov
Post doc
Ilya Kostrikov
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022