A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

Overview

A Benchmark for Rough Sketch Cleanup

This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

This code computes the metrics described in the paper and generates the benchmark website to compare the output of various sketch cleanup algorithms.

The Directory Structure

Data directories are defined in the file cfg.yaml:

  • dataset_dir: User puts the dataset here. Needed by the website.
  • alg_dir: User puts automatic results here. Needed by the website.
  • web_dir: We generate the website here. Image paths look like ../{alg_dir}/rest/of/path.svg
  • table_dir: We generate the metrics computed by the benchmark here. Needed to generate the website, but not needed when hosting the website. (A precomputed version for algorithms we tested is provided below.)
  • test_dir: We generate resized image files for testing algorithms here. Needed also when computing metrics. Not needed by the website. (A precomputed version is provided below.)

The default values are

dataset_dir: './data/Benchmark_Dataset
alg_dir: './data/Automatic_Results'
web_dir: './data/web'
table_dir: './data/Evaluation_Data'
test_dir: './data/Benchmark_Testset'

If you are generating your own test_dir data, you need Inkscape and ImageMagick. run_benchmark.py tries to find them according to your OS. You can set the paths directly in cfg.yaml by changing inkscape_path and magick_path to point to Inkscape and ImageMagick's convert executable, respectively.

Installing Code Dependencies

Clone or download this repository. The code is written in Python. It depends on the following modules: aabbtree, CairoSVG, cssutils, matplotlib, numpy, opencv-python, pandas, Pillow, PyYAML, scipy, svglib, svgpathtools, tqdm

You can install these modules with:

pip3 install -r requirements.txt

or, for a more reproducible environment, use Poetry (brew install poetry or pip install poetry):

poetry install --no-root
poetry shell

or Pipenv (pip install pipenv):

pipenv install
pipenv shell

The shell command turns on the virtual environment. It should be run once before running the scripts.

If you are not downloading the precomputed test images, make sure the following external software has been installed in your system:

  1. Inkscape 1.x. Please install an up-to-date Inkscape. Versions prior to 1.0 have incompatible command line parameters. brew cask install inkscape or apt-get install inkscape.
  2. ImageMagick. brew install imagemagick or apt-get install imagemagick.

The Dataset and Precomputed Output

You can download the sketch dataset, precomputed algorithmic output, and computed metrics here: Benchmark_Dataset.zip (900 MB), Automatic_Results.zip (440 MB), Evaluation_Data.zip (20 MB). Unzip them in ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Dataset.zip
unzip Automatic_Results.zip
unzip Evaluation_Data.zip

Note that the vectorized data has been normalized to have uniform line width. It was too tedious for artists to match line widths with the underlying image, so we did not require them to do so and then normalized the data.

Running

Generating or Downloading the Testset

(If you are trying to regenerate the website from the paper using the precomputed output and already computed metrics, you do not need the Testset. If you want to change anything except the website itself, you need it.)

The Testset consists of files derived from the dataset: rasterized versions of vector images and downsized images. You can regenerate it (see below) or download Benchmark_Testset.zip (780 MB) and extract it into ./data/ (unless you changed the paths in cfg.yaml):

unzip Benchmark_Testset.zip

You can regenerate the Testset (necessary if you change the dataset itself) by running the following commands:

python3 run_benchmark.py --normalize   # generate normalized versions of SVGs
python3 run_benchmark.py --generate-test # generate rasterized versions of Dataset, at different resolutions

This will scan dataset_dir and test_dir, generate missing normalized and rasterized images as needed. It takes approximately 20 to 30 minutes to generate the entire Testset.

Adding Algorithms to the Benchmark

Run your algorithm on all images in the Testset. If your algorithm takes raster input, run on all images in ./data/Benchmark_Testset/rough/pixel. If your algorithm takes vector input, run on all images in ./data/Benchmark_Testset/rough/vector. For each input, save the corresponding output image as a file with the same name in the directory: ./data/Automatic_Results/{name_of_your_method}{input_type}/{parameter}/

The algorithm folder name must contain two parts: name_of_your_method with an input_type suffix. The input_type suffix must be either -png or -svg. The parameter subdirectory can be any string; the string none is replaced with the empty string when generating the website. Folders beginning with a . are ignored. For examples, see the precomputed algorithmic output in ./Automatic_Results. and evaluation result in ./Evaluation_Data already.

If your algorithm runs via alg path/to/input.svg path/to/output.png, here are two example commands to run your algorithm in batch on the entire benchmark. Via find and parallel

find ./data/Benchmark_Testset/rough/pixel -name '*.png' -print0 | parallel -0 alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Via fd:

fd ./data/Benchmark_Testset/rough/pixel -e png -x alg '{}' './data/Automatic_Results/MyAlgorithm-png/none/{/.}.svg'

Computing the Metrics

Run the evaluation with the command:

python3 run_benchmark.py --evaluation

This command creates CSV files in ./data/Evaluation_Data. It will not overwrite existing CSV files. If you downloaded the precomputed data, remove a file to regenerate it.

Generating the Website to View Evaluation Results

After you have called the evaluation step above to compute the metrics, generate the website with the command:

python3 run_benchmark.py --website

You must also generate thumbnails once with the command:

python3 run_benchmark.py --thumbs

Internally, the --thumbs command creates a shell that calls find, convert, and parallel.

To view the website, open the help.html or index.html inside the web_dir manually or else call:

python3 run_benchmark.py --show

The website visualizes all algorithms' output and plots the metrics.

Putting It All Together

If you don't want to call each step separately, simply call:

python3 run_benchmark.py --all

Computing Metrics on a Single Sketch

Similarity Metrics

To run the similarity metrics manually, use tools/metric_multiple.py. To get help, run:

python3 tools/metric_multiple.py --help

To compare two files:

python3 tools/metric_multiple.py -gt "example/simple-single-dot.png" -i "example/simple-single-dot-horizontal1.png" -d 0 --f-measure --chamfer --hausdorff

Vector Metrics

To evaluate junction quality:

python3 tools/junction_quality.py --help

To compute arc length statistics:

python3 tools/svg_arclengths_statistics.py --help

Rasterization

If you need to convert a file from an SVG to a PNG, you can do it specifying the output filename:

inkscape my_file.svg --export-filename="output-WIDTH.png" --export-width=WIDTH --export-height=HEIGHT

or specifying the output type (the input filename's extension is replaced):

inkscape my_file.svg --export-type=png --export-width=WIDTH --export-height=HEIGHT

The shorthand versions of the above rasterization commands are:

inkscape -o output-WIDTH.png -w WIDTH -h HEIGHT my_file.svg

or

inkscape --export-type=png -w WIDTH -h HEIGHT my_file.svg

If you pass only one of width or height, the other is chosen automatically in a manner preserving the aspect ratio.

Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022