Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?", by Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, and Cengiz Pehlevan. Note that the file models/vgg.py contains copyright statements for the original authors and modifiers of the script. The python packages used for the simulations are contained in environment.yml (this may include extra packages that are not necessary). To generate Figure 1, run python manifold_plots.py This script is fairly simple and self-explanatory. To generate Figures 2 and 3, run python plot_cnn_capacity.py At the bottom of the plot_cnn_capacity.py script, the plotting function is called for different panels. Comment out lines to generate specific figures. This script searches for a match with sets of parameters defined in cnn_capacity_params.py. To modify parameters used for simulations, modify the dictionaries in cnn_capacity_params.py or define your own parameter sets. For a description of different parameter options, see the docstring for the function cnn_capacity.get_capacity. The simulations take quite a lot of time to run, even with parallelization. Also a word of warning that the simulations take a lot of memory (~100GB for n_cores=5). To speed things up and reduce memory usage, one can set perceptron_style=efficient or pool_over_group=True, or reduce n_dichotomies. One can also choose to set seeds to seeds = [3] in plot_cnn_capacity.py. cnn_capacity_utils.py contains utility functions. The VGG model can be found in models/vgg.py. The direct sum (aka "grid cell") convolutional network model can be found in models/gridcellconv.py The code for generating datasets can be found in datasets.py. The code was modified and superficially refactored in preparation for releasing to the public. The simulations haven't been thoroughly tested after this refactoring so it's not 100% guaranteed that the code is correct (though it doesn't appear to throw errors). Fingers crossed that everything works the way it should. The development of this code was supported by the Harvard Data Science Initiative.
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Overview
Owner
Matthew Farrell
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.
Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that
Experiments and examples converting Transformers to ONNX
Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral
Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht
Architecture Patterns with Python (TDD, DDD, EDM)
architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors
Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains
Deep Learning Models for Causal Inference
Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.
pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".
Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"
OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun
A big endian Gentoo port developed on a Pine64.org RockPro64
Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre
SLAMP: Stochastic Latent Appearance and Motion Prediction
SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti
Learning Continuous Image Representation with Local Implicit Image Function
LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo
Time Dependent DFT in Tamm-Dancoff Approximation
Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con
End-To-End Crowdsourcing
End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning
SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models
tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener