Bootstrapped Representation Learning on Graphs

Related tags

Deep Learningbgrl
Overview

Bootstrapped Representation Learning on Graphs

Overview of BGRL

This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs

The main scripts are train_transductive.py and train_ppi.py used for training on the transductive task datasets and the PPI dataset respectively.

For linear evaluation, using the checkpoints we provide

Setup

To set up a Python virtual environment with the required dependencies, run:

python3 -m venv bgrl_env
source bgrl_env/bin/activate
pip install --upgrade pip

Follow instructions to install PyTorch 1.9.1 and PyG:

pip install torch==1.9.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
pip install absl-py==0.12.0 tensorboard==2.6.0 ogb

The code uses PyG (PyTorch Geometric). All datasets are available through this package.

Experiments on transductive tasks

Train model from scratch

To run BGRL on a dataset from the transductive setting, use train_transductive.py and one of the configuration files that can be found in config/.

For example, to train on the Coauthor-CS dataset, use the following command:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg

Flags can be overwritten:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg\
                              --logdir=./runs/coauthor-cs-256\
                              --predictor_hidden_size=256

Evaluation is performed periodically during training. We fit a logistic regression model on top of the representation to assess its performance throughout training. Evaluation is triggered every eval_epochsand will not back-propagate any gradient to the encoder.

Test accuracies under linear evaluation are reported on TensorBoard. To start the tensorboard server run the following command:

tensorboard --logdir=./runs

Perform linear evaluation using the provided model weights

The configuration files we provide allow to reproduce the results in the paper, summarized in the table below. We also provide weights of the BGRL-trained encoders for each dataset.

WikiCS Amazon Computers Amazon Photos CoauthorCS CoauthorPhy
BGRL 79.98 ± 0.10
(weights)
90.34 ± 0.19
(weights)
93.17 ± 0.30
(weights)
93.31 ± 0.13
(weights)
95.73 ± 0.05
(weights)

To run linear evaluation, using the provided weights, run the following command for any of the datasets:

python3 linear_eval_transductive.py --flagfile=config-eval/coauthor-cs.cfg

Note that the dataset is split randomly between train/val/test, so the reported accuracy might be slightly different with each run. In our reported table, we average across multiple splits, as well as multiple randomly initialized network weights.

Experiments on inductive task with multiple graphs

To train on the PPI dataset, use train_ppi.py:

python3 train_ppi.py --flagfile=config/ppi.cfg

The evaluation for PPI is different due to the size of the dataset, we evaluate by training a linear layer on top of the representations via gradient descent for 100 steps.

The configuration files for the different architectures can be found in config/. We provide weights of the BGRL-trained encoder as well.

PPI
BGRL 69.41 ± 0.15 (weights)

To run linear evaluation, using the provided weights, run the following command:

python3 linear_eval_ppi.py --flagfile=config-eval/ppi.cfg

Note that our reported score is based on an average over multiple runs.

Citation

If you find the code useful for your research, please consider citing our work:

@misc{thakoor2021bootstrapped,
     title={Large-Scale Representation Learning on Graphs via Bootstrapping}, 
     author={Shantanu Thakoor and Corentin Tallec and Mohammad Gheshlaghi Azar and Mehdi Azabou and Eva L. Dyer and Rémi Munos and Petar Veličković and Michal Valko},
     year={2021},
     eprint={2102.06514},
     archivePrefix={arXiv},
     primaryClass={cs.LG}}
Owner
NerDS Lab :: Neural Data Science Lab
machine learning and neuroscience
NerDS Lab :: Neural Data Science Lab
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022