Bootstrapped Representation Learning on Graphs

Related tags

Deep Learningbgrl
Overview

Bootstrapped Representation Learning on Graphs

Overview of BGRL

This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs

The main scripts are train_transductive.py and train_ppi.py used for training on the transductive task datasets and the PPI dataset respectively.

For linear evaluation, using the checkpoints we provide

Setup

To set up a Python virtual environment with the required dependencies, run:

python3 -m venv bgrl_env
source bgrl_env/bin/activate
pip install --upgrade pip

Follow instructions to install PyTorch 1.9.1 and PyG:

pip install torch==1.9.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
pip install absl-py==0.12.0 tensorboard==2.6.0 ogb

The code uses PyG (PyTorch Geometric). All datasets are available through this package.

Experiments on transductive tasks

Train model from scratch

To run BGRL on a dataset from the transductive setting, use train_transductive.py and one of the configuration files that can be found in config/.

For example, to train on the Coauthor-CS dataset, use the following command:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg

Flags can be overwritten:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg\
                              --logdir=./runs/coauthor-cs-256\
                              --predictor_hidden_size=256

Evaluation is performed periodically during training. We fit a logistic regression model on top of the representation to assess its performance throughout training. Evaluation is triggered every eval_epochsand will not back-propagate any gradient to the encoder.

Test accuracies under linear evaluation are reported on TensorBoard. To start the tensorboard server run the following command:

tensorboard --logdir=./runs

Perform linear evaluation using the provided model weights

The configuration files we provide allow to reproduce the results in the paper, summarized in the table below. We also provide weights of the BGRL-trained encoders for each dataset.

WikiCS Amazon Computers Amazon Photos CoauthorCS CoauthorPhy
BGRL 79.98 ± 0.10
(weights)
90.34 ± 0.19
(weights)
93.17 ± 0.30
(weights)
93.31 ± 0.13
(weights)
95.73 ± 0.05
(weights)

To run linear evaluation, using the provided weights, run the following command for any of the datasets:

python3 linear_eval_transductive.py --flagfile=config-eval/coauthor-cs.cfg

Note that the dataset is split randomly between train/val/test, so the reported accuracy might be slightly different with each run. In our reported table, we average across multiple splits, as well as multiple randomly initialized network weights.

Experiments on inductive task with multiple graphs

To train on the PPI dataset, use train_ppi.py:

python3 train_ppi.py --flagfile=config/ppi.cfg

The evaluation for PPI is different due to the size of the dataset, we evaluate by training a linear layer on top of the representations via gradient descent for 100 steps.

The configuration files for the different architectures can be found in config/. We provide weights of the BGRL-trained encoder as well.

PPI
BGRL 69.41 ± 0.15 (weights)

To run linear evaluation, using the provided weights, run the following command:

python3 linear_eval_ppi.py --flagfile=config-eval/ppi.cfg

Note that our reported score is based on an average over multiple runs.

Citation

If you find the code useful for your research, please consider citing our work:

@misc{thakoor2021bootstrapped,
     title={Large-Scale Representation Learning on Graphs via Bootstrapping}, 
     author={Shantanu Thakoor and Corentin Tallec and Mohammad Gheshlaghi Azar and Mehdi Azabou and Eva L. Dyer and Rémi Munos and Petar Veličković and Michal Valko},
     year={2021},
     eprint={2102.06514},
     archivePrefix={arXiv},
     primaryClass={cs.LG}}
Owner
NerDS Lab :: Neural Data Science Lab
machine learning and neuroscience
NerDS Lab :: Neural Data Science Lab
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022