Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Overview

Discriminative Sounding Objects Localization

Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovisual Matching (The previous title is Learning to Discriminatively Localize Sounding Objects in a Cocktail-party Scenario). The code is implemented on PyTorch with python3.

Requirements

  • PyTorch 1.1
  • torchvision
  • scikit-learn
  • librosa
  • Pillow
  • opencv

Running Procedure

For experiments on Music or AudioSet-instrument, the training and evaluation procedures are similar, respectively under the folder music-exp and audioset-instrument. Here, we take the experiments on Music dataset as an example.

Data Preparation

The sounding object bounding box annotations on solo and duet are stored in music-exp/solotest.json and music-exp/duettest.json, and the data and annotations of synthetic set are available at https://zenodo.org/record/4079386#.X4PFodozbb2 . And the Audioset-instrument balanced subset bounding box annotations are in audioset-instrument/audioset_box.json

Training

Stage one
training_stage_one.py [-h]
optional arguments:
[--batch_size] training batchsize
[--learning_rate] learning rate
[--epoch] total training epoch
[--evaluate] only do testing or also training
[--use_pretrain] whether to initialize from ckpt
[--ckpt_file] the ckpt file path to be resumed
[--use_class_task] whether to use localization-classification alternative training
[--class_iter] training iterations for classification of each epoch
[--mask] mask threshold to determine whether is object or background
[--cluster] number of clusters for discrimination
python3 training_stage_one.py

After training of stage one, we will get the cluster pseudo labels and object dictionary of different classes in the folder ./obj_features, which is then used in the second stage training as category-aware object representation reference.

Stage two
training_stage_two.py [-h]
optional arguments:
[--batch_size] training batchsize
[--learning_rate] learning rate
[--epoch] total training epoch
[--evaluate] only do testing or also training
[--use_pretrain] whether to initialize from ckpt
[--ckpt_file] the ckpt file path to be resumed
python3 training_stage_two.py

Evaluation

Stage one

We first generate localization results and save then as a pkl file, then calculate metrics, IoU and AUC and also generate visualizations, by running

python3 test.py
python3 tools.py
Stage two

For evaluation of stage two, i.e., class-aware sounding object localization in multi-source scenes, we first match the cluster pseudo labels generated in stage one with gt labels to accordingly assign one object category to each center representation in the object dictionary by running

python3 match_cluster.py

It is necessary to manually ensure there is one-to-one matching between object category and each center representation.

Then we generate the localization results and calculate metrics, CIoU AUC and NSA, by running

python3 test_stage_two.py
python3 eval.py

Results

The two tables respectively show our model's performance on single-source and multi-source scenarios.

The following figures show the category-aware localization results under multi-source scenes. The green boxes mean the sounding objects while the red boxes are silent ones.

Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022