A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Related tags

Deep LearningLACE
Overview

Controllable and Compositional Generation with Latent-Space Energy-Based Models

Python 3.8 pytorch 1.7.1 Torchdiffeq 0.2.1

Teaser image Teaser image

Official PyTorch implementation of the NeurIPS 2021 paper:
Controllable and Compositional Generation with Latent-Space Energy-Based Models
Weili Nie, Arash Vahdat, Anima Anandkumar
https://nvlabs.github.io/LACE

Abstract: Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.

Requirements

  • Linux and Windows are supported, but we recommend Linux for performance and compatibility reasons.
  • 1 high-end NVIDIA GPU with at least 24 GB of memory. We have done all testing and development using a single NVIDIA V100 GPU with memory size 32 GB.
  • 64-bit Python 3.8.
  • CUDA=10.0 and docker must be installed first.
  • Installation of the required library dependencies with Docker:
    docker build -f lace-cuda-10p0.Dockerfile --tag=lace-cuda-10-0:0.0.1 .
    docker run -it -d --gpus 0 --name lace --shm-size 8G -v $(pwd):/workspace -p 5001:6006 lace-cuda-10-0:0.0.1
    docker exec -it lace bash

Experiments on CIFAR-10

The CIFAR10 folder contains the codebase to get the main results on the CIFAR-10 dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., the latent code and label pairs) from here and unzip it to the CIFAR10 folder. Or you can go to the folder CIFAR10/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

In the script run_clf.sh, the variable x can be specified to w or z, representing that the latent classifier is trained in the w-space or z-space of StyleGAN, respectively.

Sampling

To get the conditional sampling results with the ODE or Langevin dynamics (LD) sampler, you can run:

# ODE
bash scripts/run_cond_ode_sample.sh

# LD
bash scripts/run_cond_ld_sample.sh

By default, we set x to w, meaning we use the w-space classifier, because we find our method works the best in w-space. You can change the value of x to z or i to use the classifier in z-space or pixel space, for a comparison.

To compute the conditional accuracy (ACC) and FID scores in conditional sampling with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_score.sh

# LD
bash scripts/run_cond_ld_score.sh

Note that:

  1. For the ACC evaluation, you need a pre-trained image classifier, which can be downloaded as instructed here;

  2. For the FID evaluation, you need to have the FID reference statistics computed beforehand. You can go to the folder CIFAR10/prepare_data and follow the instructions to compute the FID reference statistics with real images sampled from CIFAR-10.

Experiments on FFHQ

The FFHQ folder contains the codebase for getting the main results on the FFHQ dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here (originally from StyleFlow) and unzip it to the FFHQ folder.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., glasses) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

First, you have to get the pre-trained StyleGAN2 (config-f) by following the instructions in Convert StyleGAN2 weight from official checkpoints.

Conditional sampling

To get the conditional sampling results with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_sample.sh

# LD
bash scripts/run_cond_ld_sample.sh

To compute the conditional accuracy (ACC) and FID scores in conditional sampling with the ODE or LD sampler, you can run:

# ODE
bash scripts/run_cond_ode_score.sh

# LD
bash scripts/run_cond_ld_score.sh

Note that:

  1. For the ACC evaluation, you need to train an FFHQ image classifier, as instructed here;

  2. For the FID evaluation, you need to have the FID reference statistics computed beforehand. You can go to the folder FFHQ/prepare_models_data and follow the instructions to compute the FID reference statistics with the StyleGAN generated FFHQ images.

Sequential editing

To get the qualitative and quantitative results of sequential editing, you can run:

# User-specified sampling
bash scripts/run_seq_edit_sample.sh

# ACC and FID
bash scripts/run_seq_edit_score.sh

Note that:

  • Similarly, you first need to train an FFHQ image classifier and get the FID reference statics to compute ACC and FID score by following the instructions, respectively.

  • To get the face identity preservation (ID) score, you first need to download the pre-trained ArcFace network, which is publicly available here, to the folder FFHQ/pretrained/metrics.

Compositional Generation

To get the results of zero-shot generation on novel attribute combinations, you can run:

bash scripts/run_zero_shot.sh

To get the results of compositions of energy functions with logical operators, we run:

bash scripts/run_combine_energy.sh

Experiments on MetFaces

The MetFaces folder contains the codebase for getting the main results on the MetFaces dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here and unzip it to the MetFaces folder. Or you can go to the folder MetFaces/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., yaw) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

To get the conditional sampling and sequential editing results, you can run:

# conditional sampling
bash scripts/run_cond_sample.sh

# sequential editing
bash scripts/run_seq_edit_sample.sh

Experiments on AFHQ-Cats

The AFHQ folder contains the codebase for getting the main results on the AFHQ-Cats dataset, where the scripts folder contains the necessary bash scripts to run the code.

Data preparation

Before running the code, you have to download the data (i.e., 10k pairs of latent variables and labels) from here and unzip it to the AFHQ folder. Or you can go to the folder AFHQ/prepare_data and follow the instructions to generate the data.

Training

To train the latent classifier, you can run:

bash scripts/run_clf.sh

Note that each att_name (i.e., breeds) in run_clf.sh corresponds to a separate attribute classifier.

Sampling

To get the conditional sampling and sequential editing results, you can run:

# conditional sampling
bash scripts/run_cond_sample.sh

# sequential editing
bash scripts/run_seq_edit_sample.sh

License

Please check the LICENSE file. This work may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

Please cite our paper, if you happen to use this codebase:

@inproceedings{nie2021controllable,
  title={Controllable and compositional generation with latent-space energy-based models},
  author={Nie, Weili and Vahdat, Arash and Anandkumar, Anima},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022