Temporally Coherent GAN SIGGRAPH project.

Related tags

Deep LearningTecoGAN
Overview

TecoGAN

This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution. Authors: Mengyu Chu, You Xie, Laura Leal-Taixe, Nils Thuerey. Technical University of Munich.

This repository so far contains the code for the TecoGAN inference and training, and downloading the training data. Pre-trained models are also available below, you can find links for downloading and instructions below. This work was published in the ACM Transactions on Graphics as "Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation (TecoGAN)", https://doi.org/10.1145/3386569.3392457. The video and pre-print can be found here:

Video: https://www.youtube.com/watch?v=pZXFXtfd-Ak Preprint: https://arxiv.org/pdf/1811.09393.pdf Supplemental results: https://ge.in.tum.de/wp-content/uploads/2020/05/ClickMe.html

TecoGAN teaser image

Additional Generated Outputs

Our method generates fine details that persist over the course of long generated video sequences. E.g., the mesh structures of the armor, the scale patterns of the lizard, and the dots on the back of the spider highlight the capabilities of our method. Our spatio-temporal discriminator plays a key role to guide the generator network towards producing coherent detail.

Lizard

Armor

Spider

Running the TecoGAN Model

Below you can find a quick start guide for running a trained TecoGAN model. For further explanations of the parameters take a look at the runGan.py file.
Note: evaluation (test case 2) currently requires an Nvidia GPU with CUDA. tkinter is also required and may be installed via the python3-tk package.

# Install tensorflow1.8+,
pip3 install --ignore-installed --upgrade tensorflow-gpu # or tensorflow
# Install PyTorch (only necessary for the metric evaluations) and other things...
pip3 install -r requirements.txt

# Download our TecoGAN model, the _Vid4_ and _TOS_ scenes shown in our paper and video.
python3 runGan.py 0

# Run the inference mode on the calendar scene.
# You can take a look of the parameter explanations in the runGan.py, feel free to try other scenes!
python3 runGan.py 1 

# Evaluate the results with 4 metrics, PSNR, LPIPS[1], and our temporal metrics tOF and tLP with pytorch.
# Take a look at the paper for more details! 
python3 runGan.py 2

Train the TecoGAN Model

1. Prepare the Training Data

The training and validation dataset can be downloaded with the following commands into a chosen directory TrainingDataPath. Note: online video downloading requires youtube-dl.

# Install youtube-dl for online video downloading
pip install --user --upgrade youtube-dl

# take a look of the parameters first:
python3 dataPrepare.py --help

# To be on the safe side, if you just want to see what will happen, the following line won't download anything,
# and will only save information into log file.
# TrainingDataPath is still important, it the directory where logs are saved: TrainingDataPath/log/logfile_mmddHHMM.txt
python3 dataPrepare.py --start_id 2000 --duration 120 --disk_path TrainingDataPath --TEST

# This will create 308 subfolders under TrainingDataPath, each with 120 frames, from 28 online videos.
# It takes a long time.
python3 dataPrepare.py --start_id 2000 --duration 120 --REMOVE --disk_path TrainingDataPath

Once ready, please update the parameter TrainingDataPath in runGAN.py (for case 3 and case 4), and then you can start training with the downloaded data!

Note: most of the data (272 out of 308 sequences) are the same as the ones we used for the published models, but some (36 out of 308) are not online anymore. Hence the script downloads suitable replacements.

2. Train the Model

This section gives command to train a new TecoGAN model. Detail and additional parameters can be found in the runGan.py file. Note: the tensorboard gif summary requires ffmpeg.

# Install ffmpeg for the  gif summary
sudo apt-get install ffmpeg # or conda install ffmpeg

# Train the TecoGAN model, based on our FRVSR model
# Please check and update the following parameters: 
# - VGGPath, it uses ./model/ by default. The VGG model is ca. 500MB
# - TrainingDataPath (see above)
# - in main.py you can also adjust the output directory of the  testWhileTrain() function if you like (it will write into a train/ sub directory by default)
python3 runGan.py 3

# Train without Dst, (i.e. a FRVSR model)
python3 runGan.py 4

# View log via tensorboard
tensorboard --logdir='ex_TecoGANmm-dd-hh/log' --port=8008

Tensorboard GIF Summary Example

gif_summary_example

Acknowledgements

This work was funded by the ERC Starting Grant realFlow (ERC StG-2015-637014).
Part of the code is based on LPIPS[1], Photo-Realistic SISR[2] and gif_summary[3].

Reference

[1] The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (LPIPS)
[2] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
[3] gif_summary

TUM I15 https://ge.in.tum.de/ , TUM https://www.tum.de/

Owner
Duc Linh Nguyen
Have passion in programming, using JS, Python, Ruby, Assembly, Perl, Java, Golang, C++, C#/.NET languages .
Duc Linh Nguyen
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022