Temporally Coherent GAN SIGGRAPH project.

Related tags

Deep LearningTecoGAN
Overview

TecoGAN

This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution. Authors: Mengyu Chu, You Xie, Laura Leal-Taixe, Nils Thuerey. Technical University of Munich.

This repository so far contains the code for the TecoGAN inference and training, and downloading the training data. Pre-trained models are also available below, you can find links for downloading and instructions below. This work was published in the ACM Transactions on Graphics as "Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation (TecoGAN)", https://doi.org/10.1145/3386569.3392457. The video and pre-print can be found here:

Video: https://www.youtube.com/watch?v=pZXFXtfd-Ak Preprint: https://arxiv.org/pdf/1811.09393.pdf Supplemental results: https://ge.in.tum.de/wp-content/uploads/2020/05/ClickMe.html

TecoGAN teaser image

Additional Generated Outputs

Our method generates fine details that persist over the course of long generated video sequences. E.g., the mesh structures of the armor, the scale patterns of the lizard, and the dots on the back of the spider highlight the capabilities of our method. Our spatio-temporal discriminator plays a key role to guide the generator network towards producing coherent detail.

Lizard

Armor

Spider

Running the TecoGAN Model

Below you can find a quick start guide for running a trained TecoGAN model. For further explanations of the parameters take a look at the runGan.py file.
Note: evaluation (test case 2) currently requires an Nvidia GPU with CUDA. tkinter is also required and may be installed via the python3-tk package.

# Install tensorflow1.8+,
pip3 install --ignore-installed --upgrade tensorflow-gpu # or tensorflow
# Install PyTorch (only necessary for the metric evaluations) and other things...
pip3 install -r requirements.txt

# Download our TecoGAN model, the _Vid4_ and _TOS_ scenes shown in our paper and video.
python3 runGan.py 0

# Run the inference mode on the calendar scene.
# You can take a look of the parameter explanations in the runGan.py, feel free to try other scenes!
python3 runGan.py 1 

# Evaluate the results with 4 metrics, PSNR, LPIPS[1], and our temporal metrics tOF and tLP with pytorch.
# Take a look at the paper for more details! 
python3 runGan.py 2

Train the TecoGAN Model

1. Prepare the Training Data

The training and validation dataset can be downloaded with the following commands into a chosen directory TrainingDataPath. Note: online video downloading requires youtube-dl.

# Install youtube-dl for online video downloading
pip install --user --upgrade youtube-dl

# take a look of the parameters first:
python3 dataPrepare.py --help

# To be on the safe side, if you just want to see what will happen, the following line won't download anything,
# and will only save information into log file.
# TrainingDataPath is still important, it the directory where logs are saved: TrainingDataPath/log/logfile_mmddHHMM.txt
python3 dataPrepare.py --start_id 2000 --duration 120 --disk_path TrainingDataPath --TEST

# This will create 308 subfolders under TrainingDataPath, each with 120 frames, from 28 online videos.
# It takes a long time.
python3 dataPrepare.py --start_id 2000 --duration 120 --REMOVE --disk_path TrainingDataPath

Once ready, please update the parameter TrainingDataPath in runGAN.py (for case 3 and case 4), and then you can start training with the downloaded data!

Note: most of the data (272 out of 308 sequences) are the same as the ones we used for the published models, but some (36 out of 308) are not online anymore. Hence the script downloads suitable replacements.

2. Train the Model

This section gives command to train a new TecoGAN model. Detail and additional parameters can be found in the runGan.py file. Note: the tensorboard gif summary requires ffmpeg.

# Install ffmpeg for the  gif summary
sudo apt-get install ffmpeg # or conda install ffmpeg

# Train the TecoGAN model, based on our FRVSR model
# Please check and update the following parameters: 
# - VGGPath, it uses ./model/ by default. The VGG model is ca. 500MB
# - TrainingDataPath (see above)
# - in main.py you can also adjust the output directory of the  testWhileTrain() function if you like (it will write into a train/ sub directory by default)
python3 runGan.py 3

# Train without Dst, (i.e. a FRVSR model)
python3 runGan.py 4

# View log via tensorboard
tensorboard --logdir='ex_TecoGANmm-dd-hh/log' --port=8008

Tensorboard GIF Summary Example

gif_summary_example

Acknowledgements

This work was funded by the ERC Starting Grant realFlow (ERC StG-2015-637014).
Part of the code is based on LPIPS[1], Photo-Realistic SISR[2] and gif_summary[3].

Reference

[1] The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (LPIPS)
[2] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
[3] gif_summary

TUM I15 https://ge.in.tum.de/ , TUM https://www.tum.de/

Owner
Duc Linh Nguyen
Have passion in programming, using JS, Python, Ruby, Assembly, Perl, Java, Golang, C++, C#/.NET languages .
Duc Linh Nguyen
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022