RL Algorithms with examples in Python / Pytorch / Unity ML agents

Overview

Reinforcement Learning Project

This project was created to make it easier to get started with Reinforcement Learning. It now contains:

Getting Started

Install Basic Dependencies

To set up your python environment to run the code in the notebooks, follow the instructions below.

  • If you're on Windows I recommend installing Miniforge. It's a minimal installer for Conda. I also recommend using the Mamba package manager instead of Conda. It works almost the same as Conda, but only faster. There's a cheatsheet of Conda commands which also work in Mamba. To install Mamba, use this command:
conda install mamba -n base -c conda-forge 
  • Create (and activate) a new environment with Python 3.6 or later. I recommend using Python 3.9:

    • Linux or Mac:
    mamba create --name rl39 python=3.9 numpy
    source activate rl39
    • Windows:
    mamba create --name rl39 python=3.9 numpy
    activate rl39
  • Install PyTorch by following instructions on Pytorch.org. For example, to install PyTorch on Windows with GPU support, use this command:

mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Install additional packages:
mamba install jupyter notebook matplotlib
python -m ipykernel install --user --name rl39 --display-name "rl39"
  • Change the kernel to match the rl39 environment by using the drop-down menu Kernel -> Change kernel inside Jupyter Notebook.

Install Unity Machine Learning Agents

Note: In order to run the notebooks on Windows, it's not necessary to install the Unity Editor, because I have provided the standalone executables of the environments for you.

Unity ML Agents is the software that we use for the environments. The agents that we create in Python can interact with these environments. Unity ML Agents consists of several parts:

  • The Unity Editor is used for creating environments. To install:

    • Install Unity Hub.
    • Install the latest version of Unity by clicking on the green button Unity Hub on the download page.

    To start the Unity editor you must first have a project:

    • Start the Unity Hub.
    • Click on "Projects"
    • Create a new dummy project.
    • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.
  • The Unity ML-Agents Toolkit. Download the latest release of the source code or use the Git command: git clone --branch release_18 https://github.com/Unity-Technologies/ml-agents.git.

  • The Unity ML Agents package is used inside the Unity Editor. Please read the instructions for installation.

  • The mlagents Python package is used as a bridge between Python and the Unity editor (or standalone executable). To install, use this command: python -m pip install mlagents==0.27.0. Please note that there's no conda package available for this.

Install an IDE for Python

For Windows, I would recommend using PyCharm (my choice), or Visual Studio Code. Inside those IDEs you can use the Conda environment you have just created.

Creating a custom Unity executable

Load the examples project

The Unity ML-Agents Toolkit contains several example environments. Here we will load them all inside the Unity editor:

  • Start the Unity Hub.
  • Click on "Projects"
  • Add a project by navigating to the Project folder inside the toolkit.
  • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.

Create a 3D Ball executable

The 3D Ball example contains 12 environments in one, but this doesn't work very well in the Python API. The main problem is that there's no way to reset each environment individually. Therefore, we will remove the other 11 environments in the editor:

  • Load the 3D Ball scene, by going to the project window and navigating to Examples -> 3DBall -> Scenes-> 3DBall
  • In the Hierarchy window select the other 11 3DBall objects and delete them, so that only the 3DBall object remains.

Next, we will build the executable:

  • Go to File -> Build Settings
  • In the Build Settings window, click Build
  • Navigate to notebooks folder and add 3DBall to the folder name that is used for the build.

Instructions for running the notebooks

  1. Download the Unity executables for Windows. In case you're not on Windows, you have to build the executables yourself by following the instructions above.
  2. Place the Unity executable folders in the same folder as the notebooks.
  3. Load a notebook with Jupyter notebook. (The command to start Jupyter notebook is jupyter notebook)
  4. Follow further instructions in the notebook.
You might also like...
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

TensorRT examples (Jetson, Python/C++)(object detection)
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

Releases(v1.0.0)
Owner
Rogier Wachters
Rogier Wachters
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022