Simultaneous Detection and Segmentation

Overview

##Simultaneous Detection and Segmentation

This is code for the ECCV Paper:
Simultaneous Detection and Segmentation
Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik
To appear in ECCV, 2014.

###Installation

  • Installing caffe: The code comes bundled with a version of caffe that we have modified slightly for SDS. (These modifications might be merged into the public caffe version sometime in the future). To install caffe, follow the instructions on the caffe webpage. (You'll have to install some pre-requisites). After installing all prerequisites, cd into extern/caffe and do make caffe.
    After you have made caffe, you will also need to do make matcaffe.

  • Downloading other external dependencies (MCG and liblinear): The extern folder has a script that downloads MCG and liblinear and compiles liblinear. After running the script, cd into extern/MCG-PreTrained and change the path in root_dir.m to the path to the MCG-PreTrained directory.

  • Starting MATLAB: Start MATLAB and call startup_sds from the main SDS directory. This will compile all mexes in MCG and liblinear, and add all paths.

    A few possible issues related to Caffe:

    • You may need to add the path to CUDA libraries (usually in /usr/local/cuda/lib64) to LD_LIBRARY_PATH before starting MATLAB.
    • When running the code, if you get an error saying: /usr/lib/x86_64-linux-gnu/libharfbuzz.so.0: undefined symbol: FT_Face_GetCharVariantIndex, try adding /usr/lib/x86_64-linux-gnu/libfreetype.so.6(or the equivalent library that your system may have) to the LD_PRELOAD environment variable before starting MATLAB.

###Using Pre-computed results To get started you can look at precomputed results. Download the precomputed results from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_precomputed_results.tar.gz and untar it. The precomputed results contain results on VOC2012 val images (SDS, detection and segmentation). You can visualize the precomputed results using the function visualize_precomputed_results.m: visualize_precomputed_results('/path/to/precomputed/results', '/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages', categ_id);
Here categ_id is the number of the category, for example 15 for person.

Note that you do not need to install Caffe or any of the external dependencies above if you want to simply visualize or use precomputed results.

###Testing Pre-trained models

Download the pretrained models from this ftp link: ftp://ftp.cs.berkeley.edu/pub/projects/vision/sds_pretrained_models.tar.gz and untar them in the main SDS directory.

demo_sds.m is a simple demo that uses the precomputed models to show the outputs we get on a single image. It takes no arguments. It runs the trained models on an example image and displays the detections for the person category. This function is a wrapper around the main function, which is called imagelist_to_sds.m.

###Benchmarking and evaluation

You can also run the benchmark demo, demo_sds_benchmark, which tests our pipeline on a small 100 image subset of VOC2012 val and then evaluates for the person category. You can call it as follows:
demo_sds_benchmark('/path/to/VOC2012/VOCdevkit/VOC2012/JPEGImages/', '/path/to/cachedir', '/path/to/SBD');
Here the cachedir is a directory where intermediate results will be stored. The function also requires the SBD (Semantic Boundaries Dataset), which you can get here. The function does the evaluation for both before refinement and after refinement, and reports an APr of 59.9 in the first case and 66.8 in the second case.

The main function for running the benchmark is evaluation/run_benchmark.m. demo_sds_benchmark should point you to how to run the benchmark.

###Evaluating on detection and segmentation

  • Detection: Look at imagelist_to_det.m to see how to produce a bounding box detection output. In summary, after computing scores on all regions, we use misc/box_nms.m to non-max suppress the boxes using box overlap. misc/write_test_boxes then writes the boxes out to a file that you can submit to PASCAL.

  • Semantic segmentation: Look at imagelist_to_seg.m to see how we produce a semantic segmentation output. In summary, after we compute scores on all regions, we do misc/region_nms.m to non-max suppress boxes, and use misc/get_top_regions.m to get the top regions per category. For our experiments, we picked the top 5K regions for seg val and seg test. Then we call paste_segments: [local_ids, labels, scores2] = paste_segments(topchosen, scores, region_meta_info, 2, 10, -1); topchosen is the first output of get_top_regions.m. These parameters above were tuned on seg val 2011. This function will pick out the segments to paste. To do the actual pasting, use create_pasted_segmentations (if you don't want any refinement) or create_pasted_segmentations_refined (if you want refinement). Refinement is a bit slower but works ~1 point better.

###SDS results format If you want to do more with our results, you may want to understand how we represent our results.

  • Representing region candidates: Because we work with close to 2000 region candidates, saving them as full image-sized masks uses up a lot of space and requires a lot of memory to process. Instead, we save these region candidates using a superpixel representation: we save a superpixel map, containing the superpixel id for each pixel in the image, and we represent each region as a binary vector indicating which superpixels are present in the region. To allow this superpixel representation to be accessible to Caffe, we
  • save the superpixel map as a text file, the first two numbers in which represent the size of the image and the rest of the file contains the superpixel ids of the pixels in MATLAB's column-major order (i.e, we first store the superpixel ids of the first column, then the second column and so on).
  • stack the representation of each region as a matrix (each column representing a region) and save it as a png image.

read_sprep can read this representation into matlab.

  • Representing detections: After the regions have been scored and non-max suppressed, we store the chosen regions as a cell array, one cell per category. Each cell is itself a cell array, with as many cells as there are images, and each cell containing the region id of the chosen regions. The scores are stored in a separate cell array.

  • Representing refined detections: After refinement, the refined regions are stored as binary matrices in mat files, one for each image. The refined regions for different categories are stored in different directories

###Retraining region classifiers

To retrain region classifiers, you first need to save features for all regions including ground truth. You can look at the function setup_svm_training.m. This function will save features and return a region_meta_info struct, which has in it the overlaps of all the regions with all the ground truth. The function expects a list of images, a number of paths to save stuff in, and a path to the ground truth (SBD).

Once the features are saved you can use the region_classification/train_svms.m function to train the detectors. You can also train refinement models for each category using refinement/train_refiner.m

###Retraining the network To retrain the network you will have to use caffe. You need two things: a prototxt specifying the architecture, and a window file specifying the data.

  • Window file: Writing the window file requires you to make a choice between using box overlap to define ground truth, or using region overlap to define ground truth. In the former case, use feature_extractor/make_window_file_box.m and in the latter use feature_extractor/make_window_file_box.m. Both functions require as input the image list, region_meta_info (output of preprocessing/preprocess_mcg_candidates; check setup_svm_training to see how to call it), sptextdir, regspimgdir (specifying the superpixels and regions) and the filename in which the output should go.

  • Prototxt: There are 3 prototxts that figure during training. One specifies the solver, and points to the other two: one for training and the other for testing. Training a single pathway network for boxes can be done with the window_train and window_val, a single pathway network on regions can be done using masked_window_train and masked_window_val, and a two pathway network (net C) can be trained using piwindow_train and piwindow_val. (Here "pi" refers to the architecture of the network, which looks like the capital greek pi.) The train and val prototxts also specify which window file to use. The solver prototxt specifies the path to the train and val prototxts. It also specifies where the snapshots are saved. Make sure that path can be saved to.

  • Initialization: A final requirement for finetuning is to have an initial network, and also the imagenet mean. The latter you can get by running extern/caffe/data/ilsvrc12/get_ilsvrc_aux.sh The initial network is the B network for net C. For everything else, it is the caffe reference imagenet model, which you can get by running extern/caffe/examples/imagenet/get_caffe_reference_imagenet_model.sh

  • Finetuning: cd into caffe and use the following command to train the network (replace caffe_reference_imagenet_model by the appropriate initialization):
    GLOG_logtostderr=1 ./build/tools/finetune_net.bin ../prototxts/pascal_finetune_solver.prototxt ./examples/imagenet/caffe_reference_imagenet_model 2>&1 | tee logdir/log.txt
    Finally, extracting features requires a network with the two-pathway architecture. If you trained the box and region pathway separately, you can stitch them together using feature_extractor/combine_box_region_nets.m

Owner
Bharath Hariharan
Bharath Hariharan
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022