PyTorch Connectomics: segmentation toolbox for EM connectomics

Overview


Introduction

The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individual synapses. Recent advances in electronic microscopy (EM) have enabled the collection of a large number of image stacks at nanometer resolution, but the annotation requires expertise and is super time-consuming. Here we provide a deep learning framework powered by PyTorch for automatic and semi-automatic semantic and instance segmentation in connectomics, which is called PyTorch Connectomics (PyTC). This repository is mainly maintained by the Visual Computing Group (VCG) at Harvard University.

PyTorch Connectomics is currently under active development!

Key Features

  • Multi-task, Active and Semi-supervised Learning
  • Distributed and Mixed-precision Training
  • Scalability for Handling Large Datasets

If you want new features that are relatively easy to implement (e.g., loss functions, models), please open a feature requirement discussion in issues or implement by yourself and submit a pull request. For other features that requires substantial amount of design and coding, please contact the author directly.

Environment

The code is developed and tested under the following configurations.

  • Hardware: 1-8 Nvidia GPUs with at least 12G GPU memory (change SYSTEM.NUM_GPU accordingly based on the configuration of your machine)
  • Software: CentOS Linux 7.4 (Core), CUDA>=11.1, Python>=3.8, PyTorch>=1.9.0, YACS>=0.1.8

Installation

Create a new conda environment and install PyTorch:

conda create -n py3_torch python=3.8
source activate py3_torch
conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

Please note that this package is mainly developed on the Harvard FASRC cluster. More information about GPU computing on the FASRC cluster can be found here.

Download and install the package:

git clone https://github.com/zudi-lin/pytorch_connectomics.git
cd pytorch_connectomics
pip install --upgrade pip
pip install --editable .

Since the package is under active development, the editable installation will allow any changes to the original package to reflect directly in the environment. For more information and frequently asked questions about installation, please check the installation guide.

Notes

Data Augmentation

We provide a data augmentation interface several different kinds of commonly used augmentation method for EM images. The interface is pure-python, and operate on and output only numpy arrays, so it can be easily incorporated into any kinds of python-based deep learning frameworks (e.g., TensorFlow). For more details about the design of the data augmentation module, please check the documentation.

YACS Configuration

We use the Yet Another Configuration System (YACS) library to manage the settings and hyperparameters in model training and inference. The configuration files for tutorial examples can be found here. All available configuration options can be found at connectomics/config/defaults.py. Please note that the default value of several options is None, which is only supported after YACS v0.1.8.

Segmentation Models

We provide several encoder-decoder architectures, which are customized 3D UNet and Feature Pyramid Network (FPN) models with various blocks and backbones. Those models can be applied for both semantic segmentation and bottom-up instance segmentation of 3D image stacks. Those models can also be constructed specifically for isotropic and anisotropic datasets. Please check the documentation for more details.

Acknowledgement

This project is built upon numerous previous projects. Especially, we'd like to thank the contributors of the following github repositories:

License

This project is licensed under the MIT License and the copyright belongs to all PyTorch Connectomics contributors - see the LICENSE file for details.

Citation

If you find PyTorch Connectomics (PyTC) useful in your research, please cite:

@misc{lin2019pytorchconnectomics,
  author =       {Zudi Lin and Donglai Wei},
  title =        {PyTorch Connectomics},
  howpublished = {\url{https://github.com/zudi-lin/pytorch_connectomics}},
  year =         {2019}
}
Owner
Zudi Lin
CS Ph.D. student at Harvard
Zudi Lin
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022