Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

Overview

self-driving-car

In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

Hope this might be useful to someone! :-)

Overview

Projects

Overview
P1: Basic Lane Finding
(code)

Overview
P2: Traffic Signs
(code)

Overview
P3: Behavioral Cloning
(code)

Overview
P4: Adv. Lane Finding
(code)

Overview
P5: Vehicle Detection
(code)

Overview
P6: Ext. Kalman Filter
(code)

Overview
P7: Unsc. Kalman Filter
(code)

Overview
P8: Kidnapped Vehicle
(code)

Overview
P9: PID Controller
(code)

Overview
P10: MPC Controller
(code)

Overview
P11: Path Planning
(code)

Overview
P12: Road Segmentation
(code)

Capstone


Table of Contents

P1 - Detecting Lane Lines (basic)

  • Summary: Detected highway lane lines on a video stream. Used OpencV image analysis techniques to identify lines, including Hough Transforms and Canny edge detection.
  • Keywords: Computer Vision

P2 - Traffic Sign Classification

  • Summary: Built and trained a deep neural network to classify traffic signs, using TensorFlow. Experimented with different network architectures. Performed image pre-processing and validation to guard against overfitting.
  • Keywords: Deep Learning, TensorFlow, Computer Vision

P3 - Behavioral Cloning

  • Summary: Built and trained a convolutional neural network for end-to-end driving in a simulator, using TensorFlow and Keras. Used optimization techniques such as regularization and dropout to generalize the network for driving on multiple tracks.
  • Keywords: Deep Learning, Keras, Convolutional Neural Networks

P4 - Advanced Lane Finding

  • Summary: Built an advanced lane-finding algorithm using distortion correction, image rectification, color transforms, and gradient thresholding. Identified lane curvature and vehicle displacement. Overcame environmental challenges such as shadows and pavement changes.
  • Keywords: Computer Vision, OpenCV

P5 - Vehicle Detection and Tracking

  • Summary: Created a vehicle detection and tracking pipeline with OpenCV, histogram of oriented gradients (HOG), and support vector machines (SVM). Implemented the same pipeline using a deep network to perform detection. Optimized and evaluated the model on video data from a automotive camera taken during highway driving.
  • Keywords: Computer Vision, Deep Learning, OpenCV

P6 - Extended Kalman Filter

  • Summary: Implement the extended Kalman filter in C++. Simulated lidar and radar measurements are used to detect a bicycle that travels around your vehicle. Kalman filter, lidar measurements and radar measurements are used to track the bicycle's position and velocity.
  • Keywords: C++, Kalman Filter

P7 - Unscented Kalman Filter

  • Summary: Utilize an Unscented Kalman Filter to estimate the state of a moving object of interest with noisy lidar and radar measurements. Kalman filter, lidar measurements and radar measurements are used to track the bicycle's position and velocity.
  • Keywords: C++, Kalman Filter

P8 - Kidnapped Vehicle

  • Summary: Your robot has been kidnapped and transported to a new location! Luckily it has a map of this location, a (noisy) GPS estimate of its initial location, and lots of (noisy) sensor and control data. In this project you will implement a 2 dimensional particle filter in C++. Your particle filter will be given a map and some initial localization information (analogous to what a GPS would provide). At each time step your filter will also get observation and control data.
  • Keywords: C++, Particle Filter

P9 - PID Control

  • Summary: Implement a PID controller for keeping the car on track by appropriately adjusting the steering angle.
  • Keywords: C++, PID Controller

P10 - MPC Control

  • Summary: Implement an MPC controller for keeping the car on track by appropriately adjusting the steering angle. Differently from previously implemented PID controller, MPC controller has the ability to anticipate future events and can take control actions accordingly. Indeed, future time steps are taking into account while optimizing current time slot.
  • Keywords: C++, MPC Controller

P11 - Path Planning

  • Summary: The goal in this project is to build a path planner that is able to create smooth, safe trajectories for the car to follow. The highway track has other vehicles, all going different speeds, but approximately obeying the 50 MPH speed limit. The car transmits its location, along with its sensor fusion data, which estimates the location of all the vehicles on the same side of the road.
  • Keywords: C++, Path Planning

P12 - Road Segmentation

  • Summary: Implement the road segmentation using a fully-convolutional network.
  • Keywords: Python, TensorFlow, Semantic Segmentation

Owner
Andrea Palazzi
Senior Deep Learning Engineer @ Nomitri - Computer Vision PhD
Andrea Palazzi
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021