Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Overview

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Abstract

Within the Latin (and ancient Greek) production, it is well known that peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on syllabic quantity, i.e., on on the length of the involved syllables (which can be long or short), and there is much evidence suggesting that certain authors held a preference for certain rhythmic schemes over others.
In this project, we investigate the possibility to employ syllabic quantity as a base to derive rhythmic features for the task of computational Authorship Attribution of Latin prose texts. We test the impact of these features on the attribution task when combined with other topic-agnostic features, employing three datasets and two different learning algorithms.

Syllabic Quantity for Authorship Attribution

Authorship Attribution (AA) is a subtask of the field of Authorship Analysis, which aims to infer various characteristics of the writer of a document, its identity included. In particular, given a set of candidate authors A1... Am and a document d, the goal of AA is to find the most probable author for the document d among the set of candidates; AA is thus a single-label multi-class classification problem, where the classes are the authors in the set.
In this project, we investigate the possibility to employ features extracted from the quantity of the syllables in a document as discriminative features for AA on Latin prose texts. Syllables are sound units a single word can be divided into; in particular, a syllable can be thought as an oscillation of sound in the word pronunciation, and is characterized by its quantity (long or short), which is the amount of time required to pronounce it. It is well known that classical Latin (and Greek) poetry followed metric patterns based on sequences of short and long syllables. In particular, syllables were combined in what is called a "foot", and in turn a series of "feet" composed the metre of a verse. Yet, similar metric schemes were followed also in many prose compositions, in order to give a certain cadence to the discourse and focus the attention on specific parts. In particular, the end of sentences and periods was deemed as especially important in this sense, and known as clausola. During the Middle Ages, Latin prosody underwent a gradual but profound change. The concept of syllabic quantity lost its relevance as a language discriminator, in favour of the accent, or stress. However, Latin accentuation rules are largely dependent on syllabic quantity, and medieval writers retained the classical importance of the clausola, which became based on stresses and known as cursus. An author's practice of certain rhythmic patterns might thus play an important role in the identification of that author's style.

Datasets

In this project, we employ 3 different datasets:

  • LatinitasAntiqua. The texts can be automatically downloaded with the script in the corresponding code file (src/dataset_prep/LatinitasAntiqua_prep.py). They come from the Corpus Corporum repository, developed by the University of Zurich, and in particular its sub-section called Latinitas antiqua, which contains various Latin works from the Perseus Digital library; in total, the corpus is composed of 25 Latin authors and 90 prose texts, spanning through the Classical, Imperial and Early-Medieval periods, and a variety of genres (mostly epistolary, historical and rhetoric).
  • KabalaCorpusA. The texts can be downloaded from the followig [link](https://www.jakubkabala.com/gallus-monk/). In particular, we use Corpus A, which consists of 39 texts by 22 authors from the 11-12th century.
  • MedLatin. The texts can be downloaded from the following link: . Originally, the texts were divided into two datasets, but we combine them together. Note that we exclude the texts from the collection of Petrus de Boateriis, since it is a miscellanea of authors. We delete the quotations from other authors and the insertions in languages other than Latin, marked in the texts.
The documents are automatically pre-processed in order to clean them from external information and noise. In particular, headings, editors' notes and other meta-information are deleted where present. Symbols (such as asterisks or parentheses) and Arabic numbers are deleted as well. Punctuation marks are normalized: every occurrence of question and exclamation points, semicolons, colons and suspension points are exchanged with a single point, while commas are deleted. The text is finally lower-cased and normalized: the character v is exchanged with the character u and the character j with the character i, and every stressed vowels is exchanged with the corresponding non-stressed vowel. As a final step, each text is divided into sentences, where a sentence is made of at least 5 distinct words (shorter sentences are attached to the next sentence in the sequence, or the previous one in case it is the last one in the document). This allows to create the fragments that ultimately form the training, validation and and test sets for the algorithms. In particular, each fragment is made of 10 consecutive, non-overlapping sentences.

Experiments

In order to transform the Latin texts into the corresponding syllabic quantity (SQ) encoding, we employ the prosody library available on the [Classical Language ToolKit](http://cltk.org/).
We also experiment with the four Distortion Views presented by [Stamatatos](https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.23968?casa_token=oK9_O2SOpa8AAAAA%3ArLsIRzk4IhphR7czaG6BZwLmhh9mk4okCj--kXOJolp1T70XzOXwOw-4vAOP8aLKh-iOTar1mq8nN3B7), which, given a list Fw of function words, are:

  • Distorted View – Multiple Asterisks (DVMA): every word not included in Fw is masked by replacing each of its characters with an asterisk.
  • Distorted View – Single Asterisk (DVSA): every word not included in Fw is masked by replacing it with a single asterisk.
  • Distorted View – Exterior Characters (DVEX): every word not included in Fw is masked by replacing each of its characters with an asterisk, except the first and last one.
  • Distorted View – Last 2 (DVL2): every word not included in Fw is masked by replacing each of its characters with an asterisk, except the last two characters.
BaseFeatures (BFs) and it's made of: function words, word lengths, sentence lengths.
We experiment with two different learning methods: Support Vector Machine and Neural Network. All the experiments are conducted on the same train-validation-test split.
For the former, we compute the TfIdf of the character n-grams in various ranges, extracted from the various encodings of the text, which we concatenate to BaseFeatures, and feed the resulting features matrix to a LinearSVC implemented in the [scikit-learn package](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html).
For the latter, we compute various parallel, identical branches, each one processing a single encoding or the Bfs matrix, finally combining the different outputs into a single decision layer. The network is implimented with the [PyTorch package](https://pytorch.org/). Each branch outputs a matrix of probabilities, which are stacked together, and an average-pooling operation is applied in order to obtain the average value of the decisions of the different branches. The final decision is obtained through a final dense layer applying a softmax (for training) or argmax (for testing) operation over the classes probabilities. The training of the network is conducted with the traditional backpropagation method; we employ cross-entropy as the loss function and the Adam optimizer.
We employ the macro-F1 and micro-F1 as measures in order to assess the performance of the methods. For each method employing SQ-based features, we compute the statistical significance against its baseline (the same method without SQ-based features); to this aim, we employ the McNemar's paired non-parametric statistical hypothesis test, taking $0.05$ as significance value.

NN architecture

Code

The code is organized as follows int the src directory:

  • NN_models: the directory contains the code to build the Neural Networks tried in the project, one file for each architecture. The one finally used in the project is in the file NN_cnn_deep_ensemble.py.
  • dataset_prep: the directory contains the code to preprocess the various dataset employed in the project. The file NN_dataloader.py prepares the data to be processed for the Neural Network.
  • general: the directory contains: a) helpers.py, with various functions useful for the current project; b) significance.py, with the code for the significance test; c) utils.py, with more comme useful functions; d) visualization.py, with functions for drawing graphics and similar.
  • NN_classification.py: it performs the Neural Networks experiments.
  • SVM_classification.py: it performs the Support Vector Machine experiments.
  • feature_extractor.py: it extract the features for the SVM experiments.
  • main.py

Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022