Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Overview

Self-Training for Neural Sequence Generation

This repo includes instructions for running noisy self-training algorithms from the following paper:

Revisiting Self-Training for Neural Sequence Generation
Junxian He*, Jiatao Gu*, Jiajun Shen, Marc'Aurelio Ranzato
ICLR 2020

Requirement

  • fairseq (please see the fairseq repo for other requirements on Python and PyTorch versions)

fairseq can be installed with:

pip install fairseq

Data

Download and preprocess the WMT'14 En-De dataset:

# Download and prepare the data
wget https://raw.githubusercontent.com/pytorch/fairseq/master/examples/translation/prepare-wmt14en2de.sh
bash prepare-wmt14en2de.sh --icml17

TEXT=wmt14_en_de
fairseq-preprocess --source-lang en --target-lang de \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir wmt14_en_de_bin --thresholdtgt 0 --thresholdsrc 0 \
    --joined-dictionary --workers 16

Then we mimic a semi-supervised setting where 100K training samples are randomly selected as parallel corpus and the remaining English training samples are treated as unannotated monolingual corpus:

bash extract_wmt100k.sh

Preprocess WMT100K:

bash preprocess.sh 100ken 100kde 

Add noise to the monolingual corpus for later usage:

TEXT=wmt14_en_de
python paraphrase/paraphrase.py \
  --paraphraze-fn noise_bpe \
  --word-dropout 0.2 \
  --word-blank 0.2 \
  --word-shuffle 3 \
  --data-file ${TEXT}/train.mono_en \
  --output ${TEXT}/train.mono_en_noise \
  --bpe-type subword

Train the base supervised model

Train the translation model with 30K updates:

bash supervised_train.sh 100ken 100kde 30000

Self-training as pseudo-training + fine-tuning

Translate the monolingual data to train.[suffix] to form a pseudo parallel dataset:

bash translate.sh [model_path] [suffix]  

Suppose the pseduo target language suffix is mono_de_iter1 (by default), preprocess:

bash preprocess.sh mono_en_noise mono_de_iter1

Pseudo-training + fine-tuning:

bash self_train.sh mono_en_noise mono_de_iter1 

The above command trains the model on the pseduo parallel corpus formed by train.mono_en_noise and train.mono_de_iter1 and then fine-tune it on real parallel data.

This self-training process can be repeated for multiple iterations to improve performance.

Reference

@inproceedings{He2020Revisiting,
title={Revisiting Self-Training for Neural Sequence Generation},
author={Junxian He and Jiatao Gu and Jiajun Shen and Marc'Aurelio Ranzato},
booktitle={Proceedings of ICLR},
year={2020},
url={https://openreview.net/forum?id=SJgdnAVKDH}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022