An investigation project for SISR.

Overview

SISR-Survey

An investigation project for SISR.

This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learning-based Single-Image Super-Resolution".

Purpose

Due to the pages and time limitation, it is impossible to introduce all SISR methods in the paper, and it is impossible to update the latest methods in time. Therefore, we use this project to assist our survey to cover more methods. This will be a continuously updated project! We hope it can help more researchers and promote the development of image super-resolution. Welcome more researchers to jointly maintain this project!

Abstract

Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their targets, such as reconstruction efficiency, reconstruction accuracy, and perceptual accuracy. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field.

Taxonomy

Datasets

Benchmarks datasets for single-image super-resolution (SISR).

SINGLE-IMAGE SUPER-RESOLUTION

Reconstruction Efficiency Methods

Perceptual Quality Methods

Perceptual Quality Methods

Further Improvement Methods

DOMAIN-SPECIFIC APPLICATIONS

Real-World SISR

Remote Sensing Image Super-Resolution

Hyperspectral Image Super-Resolution

In contrast to human eyes that can only be exposed to visible light, hyperspectral imaging is a technique for collecting and processing information across the entire range of electromagnetic spectrum. The hyperspectral system is often compromised due to the limitations of the amount of the incident energy, hence there is a trade-off between the spatial and spectral resolution. Therefore, hyperspectral image super-resolution is studied to solve this problem.

[1] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

[2] Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network

[3] Hyperspectral Image Super-Resolution with Optimized RGB Guidance

[4] Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery

[5] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

Light Field Image Super-Resolution

Light field (LF) camera is a camera that can capture information about the light field emanating from a scene and can provide multiple views of a scene. Recently, the LF image is becoming more and more important since it can be used for post-capture refocusing, depth sensing, and de-occlusion. However, LF cameras are faced with a trade-off between spatial and angular resolution. In order to solve this issue, SR technology is introduced to achieve a good balance between spatial and angular resolution.

[1] Light-field Image Super-Resolution Using Convolutional Neural Network

[2] LFNet: A novel Bidirectional Recurrent Convolutional Neural Network for Light-field Image Super-Resolution

[3] Spatial-Angular Interaction for Light Field Image Super-Resolution

[4] Light Field Image Super-Resolution Using Deformable Convolution

Face Image Super-Resolution

Face image super-resolution is the most famous field in which apply SR technology to domain-specific images. Due to the potential applications in facial recognition systems such as security and surveillance, face image super-resolution has become an active area of research.

[1] Learning Face Hallucination in the Wild

[2] Deep Cascaded Bi-Network for Face Hallucination

[3] Hallucinating Very Low-Resolution Unaligned and Noisy Face Images by Transformative Discriminative Autoencoders

[4] Super-Identity Convolutional Neural Network for Face Hallucination

[5] Exemplar Guided Face Image Super-Resolution without Facial Landmarks

[6] Robust Facial Image Super-Resolution by Kernel Locality-Constrained Coupled-Layer Regression

Medical Image Super-Resolution

Medical imaging methods such as computational tomography (CT) and magnetic resonance imaging (MRI) are essential to clinical diagnoses and surgery planning. Hence, high-resolution medical images are desirable to provide necessary visual information of the human body. Recently, many methods have been proposed for medical image super-resolution

[1] Efficient and Accurate MRI Super-Resolution Using A Generative Adversarial Network and 3D Multi-Level Densely Connected Network

[2] CT-Image of Rock Samples Super Resolution Using 3D Convolutional Neural Network

[3] Channel Splitting Network for Single MR Image Super-Resolution

[4] SAINT: Spatially Aware Interpolation Network for Medical Slice Synthesis

Depth Map Super-Resolution

The depth map is an image or image channel that contains information relating to the distance of the surfaces of scene objects from a viewpoint. The use of depth information of a scene is essential in many applications such as autonomous navigation, 3D reconstruction, human-computer interaction, and virtual reality. However, depth sensors, such as Microsoft Kinect and Lidar, can only provide depth maps of limited resolutions. Hence, depth map super-resolution has drawn more and more attention recently.

[1] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

[2] Atgv-net: Accurate Depth Super-Resolution

[3] Depth Map Super-Resolution by Deep Multi-Scale Guidance

[4] Deeply Supervised Depth Map Super-Resolution as Novel View Synthesis

[5] Perceptual Deep Depth Super-Resolution

[6] Channel Attention based Iterative Residual Kearning for Depth Map Super-Resolution

Stereo Image Super-Resolution

The dual camera has been widely used to estimate depth information. Meanwhile, stereo imaging can also be applied in image restoration. In the stereo image pair, we have two images with disparity much larger than one pixel. Therefore, full use of these two images can enhance the spatial resolution.

[1] Enhancing the Spatial Resolution of Stereo Images Using A Parallax Prior

[2] Learning Parallax Attention for Stereo Image Super-Resolution

[3] Parallax Attention for Unsupervised Stereo Correspondence Learning

[4] Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution

[5] A Stereo Attention Module for Stereo Image Super-Resolution

[6] Symmetric Parallax Attention for Stereo Image Super-Resolution

[7] Deep Bilateral Learning for Stereo Image Super-Resolution

[8] Stereoscopic Image Super-Resolution with Stereo Consistent Feature

[9] Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation

RECONSTRUCTION RESULTS

PSNR/SSIM comparison of lightweight SISR models (the number of model parameters less than 1000K) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

PSNR/SSIM comparison of large SISR models (the number of model parameters more than 1M, M=million) on Set5 (x4), Set14 (x4), and Urban100 (x4). Meanwhile, the training datasets and the number of model parameters are provided. Sort by PSNR of Set5 in ascending order. Best results are highlighted.

Owner
Juncheng Li
Juncheng Li
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022