Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Overview

Pop-Out Motion

Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Kyun (T-K) Kim (*: equal contributions)

[Project Page] [Paper] [Video]

animated

We present a framework that can deform an object in a 2D image as it exists in 3D space. While our method leverages 2D-to-3D reconstruction, we argue that reconstruction is not sufficient for realistic deformations due to the vulnerability to topological errors. Thus, we propose to take a supervised learning-based approach to predict the shape Laplacian of the underlying volume of a 3D reconstruction represented as a point cloud. Given the deformation energy calculated using the predicted shape Laplacian and user-defined deformation handles (e.g., keypoints), we obtain bounded biharmonic weights to model plausible handle-based image deformation.

 

Environment Setup

Clone this repository and install the dependencies specified in requirements.txt.

 git clone https://github.com/jyunlee/Pop-Out-Motion.git
 mv Pop-Out-Motion
 pip install -r requirements.txt 

 

Data Pre-Processing

Training Data

  1. Build executables from the c++ files in data_preprocessing directory. After running the commands below, you should have normalize_bin and calc_l_minv_bin executables.
 cd data_preprocessing
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. Clone and build Manifold repository to obtain manifold executable.

  2. Clone and build fTetWild repository to obtain FloatTetwild_bin executable.

  3. Run preprocess_train_data.py to prepare your training data. This should perform (1) shape normalization into a unit bounding sphere, (2) volume mesh conversion, and (3) cotangent Laplacian and inverse mass calculation.

 python preprocess_train_data.py 

Test Data

  1. Build executables from the c++ files in data_preprocessing directory. After running the commands below, you should have normalize_bin executable.
 cd data_preprocessing
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. Run preprocess_test_data.py to prepare your test data. This should perform (1) shape normalization into a unit bounding sphere and (2) pre-computation of KNN-Based Point Pair Sampling (KPS).
 python preprocess_test_data.py 

 

Network Training

Run network/train.py to train your own Laplacian Learning Network.

 cd network
 python train.py 

The pre-trained model on DFAUST dataset is also available here.

 

Network Inference

Deformation Energy Inference

  1. Given an input image, generate its 3D reconstruction via running PIFu. It is also possible to directly use point cloud data obtained from other sources.

  2. Pre-process the data obtained from Step 1 -- please refer to this section.

  3. Run network/a_inference.py to predict the deformation energy matrix.

 cd network
 python a_inference.py 

Handle-Based Deformation Weight Calculation

  1. Build an executable from the c++ file in bbw_calculation directory. After running the commands below, you should have calc_bbw_bin executable.
 cd bbw_calculation
 mkdir build
 cd build
 cmake ..
 make
 cd ..
  1. (Optional) Run sample_pt_handles.py to obtain deformation control handles sampled by farthest point sampling.

  2. Run calc_bbw_bin to calculate handle-based deformation weights using the predicted deformation energy.

./build/calc_bbw_bin <shape_path> <handle_path> <deformation_energy_path> <output_weight_path>

 

Citation

If you find this work useful, please consider citing our paper.

@InProceedings{lee2022popoutmotion,
    author = {Lee, Jihyun and Sung, Minhyuk and Kim, Hyunjin and Kim, Tae-Kyun},
    title = {Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022}
}

 

Acknowledgements

Owner
Jihyun Lee
Jihyun Lee
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
571 Dec 25, 2022