Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview

Overview

This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and handcrafted features as inputs,to balance the trade-off between performance and model complexity. The paper can be checked here.

The model performance is tested on the ASVSpoof 2019 Dataset.

Overview

Setup

Environment

Show details

  • speechbrain==0.5.7
  • pandas
  • torch==1.9.1
  • torchaudio==0.9.1
  • nnAudio==0.2.6
  • ptflops==0.6.6

  • Create a conda environment with conda env create -f environment.yml.
  • Activate the conda environment with conda activate .

``

Data preprocessing

.
├── data                       
│   │
│   ├── PA                  
│   │   └── ...
│   └── LA           
│       ├── ASVspoof2019_LA_asv_protocols
│       ├── ASVspoof2019_LA_asv_scores
│       ├── ASVspoof2019_LA_cm_protocols
│       ├── ASVspoof2019_LA_train
│       ├── ASVspoof2019_LA_dev
│       
│
└── ARawNet
  1. Download dataset. Our experiment is trained on the Logical access (LA) scenario of the ASVspoof 2019 dataset. Dataset can be downloaded here.

  2. Unzip and save the data to a folder data in the same directory as ARawNet as shown in below.

  3. Run python preprocess.py Or you can use our processed data directly under "/processed_data".

Train

python train_raw_net.py yaml/RawSNet.yaml --data_parallel_backend -data_parallel_count=2

Evaluate

python eval.py

Check Model Size and multiply-and-accumulates (MACs)

python check_model_size.py yaml/RawSNet.yaml

Model Performance

Accuracy metric

min t−DCF =min{βPcm (s)+Pcm(s)}

Explanations can be found here: t-DCF

Experiment Results

Front-end Main Encoder E_A EER min-tDCF
Res2Net Spec Res2Net - 8.783 0.2237
LFCC - 2.869 0.0786
CQT - 2.502 0.0743
Rawnet2 Raw waveforms Rawnet2 - 5.13 0.1175
ARawNet Mel-Spectrogram XVector 1.32 0.03894
- 2.39320 0.06875
ARawNet Mel-Spectrogram ECAPA-TDNN 1.39 0.04316
- 2.11 0.06425
ARawNet CQT XVector 1.74 0.05194
- 3.39875 0.09510
ARawNet CQT ECAPA-TDNN 1.11 0.03645
- 1.72667 0.05077
Main Encoder Auxiliary Encoder Parameters MACs
Rawnet2 - 25.43 M 7.61 GMac
Res2Net - 0.92 M 1.11 GMac
XVector 5.81 M 2.71 GMac
XVector - 4.66M 1.88 GMac
ECAPA-TDNN 7.18 M 3.19 GMac
ECAPA-TDNN - 6.03M 2.36 GMac

Cite Our Paper

If you use this repository, please consider citing:

@inproceedings{Teng2021ComplementingHF, title={Complementing Handcrafted Features with Raw Waveform Using a Light-weight Auxiliary Model}, author={Zhongwei Teng and Quchen Fu and Jules White and M. Powell and Douglas C. Schmidt}, year={2021} }

@inproceedings{Fu2021FastAudioAL, title={FastAudio: A Learnable Audio Front-End for Spoof Speech Detection}, author={Quchen Fu and Zhongwei Teng and Jules White and M. Powell and Douglas C. Schmidt}, year={2021} }

Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022