DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

Overview

DSEE

Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Zhangyang Wang, Ahmed Hassan Awadallahp

License: MIT

Overview

TBD

Requirements

We use conda to create virtual environments.

conda create -f environment.yml
conda activate dsee

Command

Unstructured DSEE

Step 0.

cd non-GPT-2
pip install -e .
cd ..

Step 1. Pre-training

Take SST-2 as example:

OUTPUT_DIR='./sst2_rank16_s1_64'
num_gpus=4
python -m torch.distributed.launch \
    --nproc_per_node=$num_gpus \
    --master_port=12345 non-GPT-2/examples/pytorch/text-classification/run_glue.py \
    --save_total_limit 10 \
    --model_name_or_path bert-base-uncased \ 
    --task_name sst2 \
    --output_dir ${OUTPUT_DIR} \
    --do_train \
    --do_eval \
    --num_train_epochs 3 \
    --save_steps 50 \
    --seed 1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --max_seq_length 128 \
    --overwrite_output_dir \
    --logging_steps 50 \
    --load_best_model_at_end True \
    --metric_for_best_model eval_accuracy \
    --apply_lora \
    --lora_r 16 \
    --apply_sparse \
    --num_sparse 64  \
    --learning_rate 2e-4 \
    --evaluation_strategy steps 

Step 2. Pruning & Fine-tuning

OUTPUT_DIR='./sst2_rank16_s1_64_prune_0.5'
num_gpus=4
python -m torch.distributed.launch \
    --nproc_per_node=$num_gpus \
    --master_port=12335 \
    non-GPT-2/examples/pytorch/text-classification/run_glue_prune_tune.py \
    --save_total_limit 10 \
    --model_name_or_path sst2_rank16_s1_64 \
    --task_name sst2 \
    --output_dir ${OUTPUT_DIR} \
    --do_train \
    --do_eval \
    --num_train_epochs 3 \
    --save_steps 50 \
    --seed 1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --max_seq_length 128 \
    --overwrite_output_dir \
    --logging_steps 50 \
    --load_best_model_at_end True \
    --metric_for_best_model eval_accuracy \
    --apply_lora \
    --lora_r 16 \
    --apply_sparse \
    --num_sparse 64 \
    --learning_rate 2e-4 \
    --pruning_ratio 0.5 \
    --evaluation_strategy steps

TODO

  • Codes for Unstructured DSEE on GPT-2
  • Codes for Structured DSEE

Acknowledgement

  1. The Huggingface's Transformers (https://github.com/huggingface/transformers)
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022