Solution to the Weather4cast 2021 challenge

Overview

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predictions, evaluating pre-trained models and training new models.

Installation

To use the code, you need to:

  1. Clone the repository.
  2. Setup a conda environment. You can find an environment verified to work in the environment.yml file. However, you might have to adapt it to your own CUDA installation.
  3. Fetch the data you want from the competition website. Follow the instructions here. The data should should be in the data directory following the structure specified here.
  4. (Optional) If you want to use the pre-trained models, load them from https://doi.org/10.5281/zenodo.5101213. Place the .h5 files in the models/best directory.

Running the code

Go to the weather4cast directory. There you can either launch the main.py script with instructions provided below, or launch an interactive prompt (e.g. ipython) and then import modules and call functions from them.

Reproducing predictions

Run:

python main.py submit --comp_dir=w4c-core-stage-1 --submission_dir="../submissions/test"

where you can change --comp_dir to indicate which competition you want to create predictions for (these correspond to the directory names in the data directory) and --submission_dir to indicate where you want to save the predictions.

This script automatically loads the best model weights corresponding to the "V4pc" submission that produced the best scores on the leaderboards. To experiment with other weights, see the function combined_model_with_weights in models.py and the call to that in main.py. You can change the combination of models and weights with the argument var_weights in combined_model_with_weights.

Generating the predictions should be possible in a reasonable time also on a CPU.

Evaluate pre-trained model

python main.py train --comp_dir=w4c-core-stage-1 --model=resgru --weights="../models/best/resrnn-temperature.h5" --dataset=CTTH --variable=temperature

This example trains the ResGRU model for the temperature variable, loading the pre-trained weights from the --weights file. You can change the model and the variable using the --model, --weights, --dataset and --variable arguments.

A GPU is recommended for this although in principle it can be done on a CPU.

Train a model

python main.py train --comp_dir="w4c-core-stage-1" --model="resgru" --weights=model.h5 --dataset=CTTH --variable=temperature

The arguments are the same as for evaluate except the --weights parameter indicates instead the weights file that the training process keeps saving in the models directory.

A GPU is basically mandatory. The default batch size is set to 32 used in the study but you may have to reduce it if you don't have a lot of GPU memory.

Hint: It is not recommended to train like this except for demonstration purposes. Instead I recommend you look at how the train function in main.py works and follow that in an interactive prompt. The batch generators batch_gen_train and batch_gen_valid are very slow at first but get faster as they cache data. Once the cache is fully populated they will be much faster. You can avoid this overhead by pickling a fully loaded generator. For example:

import pickle

for i in range(len(batch_gen_train)):
    batch_gen_train[i] # fetch all batches

with open("batch_gen_train.pkl", 'wb') as f:
    pickle.dump(batch_gen_train, f)
Owner
Jussi Leinonen
Data scientist working on Atmospheric Science problems
Jussi Leinonen
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023