Crab - A Python Library for Recommendation Engines This library intends to be a reference for recommendation engines in Python Programming language. It is written in pure python to maximize the cross-platform issue and exposes the recommendation logic to your application by easy to use API REST via web services. The library is extensible, so the user can create new representations, algorithms and the design is optimized for performance. It is also open-source so everyone can use it. If you want to see our plan release/roadmap, please take a look at our Issues Tracker: http://github.com/marcelcaraciolo/crab/issues
This library intends to be a reference for recommendation engines in Python
Overview
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.
DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph
A recommendation system for suggesting new books given similar books.
Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E
Mutual Fund Recommender System. Tailor for fund transactions.
Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).
Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe
A Python scikit for building and analyzing recommender systems
Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th
A movie recommender which recommends the movies belonging to the genre that user has liked the most.
Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe
Cloud-based recommendation system
This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.
Recommendation System to recommend top books from the dataset
recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als
Recommender System Papers
Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021
A framework for large scale recommendation algorithms.
A framework for large scale recommendation algorithms.
Graph Neural Networks for Recommender Systems
This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).
Plex-recommender - Get movie recommendations based on your current PleX library
plex-recommender Description: Get movie/tv recommendations based on your current
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".
This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp
Respiratory Health Recommendation System
Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr
Handling Information Loss of Graph Neural Networks for Session-based Recommendation
LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'
DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link
Movie Recommender System
Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.
Attentive Social Recommendation: Towards User And Item Diversities
ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks
Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20